|
|
A249690
|
|
Smallest prime k such that sigma(k - m) = sigma(k + m) has exactly n solutions, where m > 0 and sigma is A000203.
|
|
0
|
|
|
2, 19, 131, 179, 1223, 1373, 1931, 4217, 6907, 10861, 9433, 9371, 39877, 63353, 98491, 90749, 83873
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
If k is not required to be a prime the sequence becomes 1, 19, 68, 148, 618, 803, 346, ... . - Derek Orr, Nov 05 2014
|
|
LINKS
|
Table of n, a(n) for n=0..16.
|
|
EXAMPLE
|
19 is in this sequence because sigma(19 - 4) = sigma(19 + 4) = 24 and prime 19 has one solution;
131 is in this sequence because sigma(131 - 20) = sigma(131 + 20) = 152, sigma(131 - 35) = sigma(131 + 35) = 252 and prime 131 has two solutions.
|
|
PROG
|
(PARI) a(n)=forprime(p=1, , c=0; for(k=1, p-1, if(sigma(p+k)==sigma(p-k), c++)); if(c==n, return(p)))
n=0; while(n<10, print1(a(n), ", "); n++) \\ Derek Orr, Nov 04 2014
|
|
CROSSREFS
|
Cf. A000203, A070299, A249644.
Sequence in context: A055518 A289230 A350568 * A206948 A089364 A178829
Adjacent sequences: A249687 A249688 A249689 * A249691 A249692 A249693
|
|
KEYWORD
|
nonn,hard,more
|
|
AUTHOR
|
Juri-Stepan Gerasimov, Nov 03 2014
|
|
EXTENSIONS
|
More terms from Derek Orr, Nov 04 2014
|
|
STATUS
|
approved
|
|
|
|