login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206948 Number of nonisomorphic graded posets with 0 and non-uniform Hasse graph of rank n, with exactly 2 elements of each rank level above 0. 4
0, 0, 0, 2, 19, 131, 791, 4446, 23913, 124892, 638878, 3218559, 16027375, 79093773, 387540260, 1887974063, 9154751912, 44221373872, 212931964415, 1022594028515, 4900116587043, 23437066655010, 111923110602497 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

We do not assume all maximal elements have maximal rank and thus use graded poset to mean: For every element x, all maximal chains among those with x as greatest element have the same finite length. Here, the term uniform used in the sense of Retakh, Serconek and Wilson.

REFERENCES

R. Stanley, Enumerative combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

V. Retakh, S. Serconek, and R. Wilson, Hilbert Series of Algebras Associated to Directed Graphs and Order Homology, arXiv:1010.6295 [math.RA], 2010-2011.

Wikipedia, Graded poset

Index entries for linear recurrences with constant coefficients, signature (11, -40, 55, -30, 6).

FORMULA

a(n) = 11*a(n-1) - 40*a(n-2) + 55*a(n-3) - 30*a(n-4) + 6*a(n-5), a(0)=0, a(1)=0, a(2)=0, a(3)=2, a(4)=19, a(5)=131.

G.f.: (x^3*(2 - 3*x + 2*x^2))/((1 - 6*x + 6*x^2)*(1 - 5*x + 4*x^2 - x^3)).

MATHEMATICA

LinearRecurrence[{11, -40, 55, -30, 6}, {0, 0, 0, 2, 19, 131}, 23] (* David Nacin, Feb 29 2012; a(0) added by Georg Fischer, Apr 03 2019 *)

PROG

(Python)

def a(n, adict={0:0, 1:0, 2:0, 3:2, 4:19, 5:131}):

if n in adict:

return adict[n]

adict[n]=11*a(n-1)-40*a(n-2)+55*a(n-3)-30*a(n-4)+6*a(n-5)

return adict[n]

for n in range(0, 40):

print(a(n))

CROSSREFS

a(n) = A086405(n) - A012781(n+1).

Cf. A206947 (unique maximal element added).

Cf. A206949, A206950 (allowing one or two elements in each rank level above 0 with and without maximal element).

Sequence in context: A289230 A350568 A249690 * A089364 A178829 A166298

Adjacent sequences: A206945 A206946 A206947 * A206949 A206950 A206951

KEYWORD

nonn,easy

AUTHOR

David Nacin, Feb 13 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 28 07:13 EST 2023. Contains 359850 sequences. (Running on oeis4.)