The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086405 Row T(n,3) of number array A086404. 8
1, 4, 18, 84, 396, 1872, 8856, 41904, 198288, 938304, 4440096, 21010752, 99423936, 470479104, 2226331008, 10535111424, 49852682496, 235905426432, 1116316463616, 5282466223104, 24996898556928, 118286594002944 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Binomial transform of A079935.
Number of nonisomorphic graded posets with 0 of rank n+1, with exactly 2 elements of each rank level above 0. Here, we do not assume all maximal elements have maximal rank and thus use graded poset to mean: For every element x, all maximal chains among those with x as greatest element have the same finite length. - David Nacin, Feb 13 2012
REFERENCES
R. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.
LINKS
Wikipedia, Graded Poset
FORMULA
G.f.: (1-2*x)/((1-(3-sqrt(3))*x)*(1-(3+sqrt(3))*x)) = (1-2*x)/(1-6*x+6*x^2);
a(n) = (3-sqrt(3))^n*(1/2 - 1/(2*sqrt(3))) + (3 + sqrt(3))^n*(1/2 + 1/(2*sqrt(3))).
E.g.f.: exp(3*x)*(cosh(sqrt(3*x) + sinh(sqrt(3)*x)/sqrt(3)). - Paul Barry, Nov 20 2003
a(n) = Sum_{k=1..floor(n/2)} C(n, 2k)*3^(n-k-1). - Paul Barry, Nov 22 2003
a(n) = (((1+sqrt(3))*(3+sqrt(3))^n) - ((1-sqrt(3))*(3-sqrt(3))^n))/sqrt(12). - Al Hakanson (hawkuu(AT)gmail.com), Jun 10 2009
a(n) = Sum_{k=0..n} A117317(n,k)*2^k. - Philippe Deléham, Jan 28 2012
a(n) = 6*(a(n-1) - a(n-2)), a(0)=1, a(1)=4. - David Nacin, Feb 27 2012
G.f.: (1-2*x)/(1-6*x+6*x^2). - Colin Barker, Aug 04 2012
MATHEMATICA
LinearRecurrence[{6, -6}, {1, 4}, 60] (* David Nacin, Feb 27 2012 *)
PROG
(Python)
def a(n, adict={0:1, 1:4}):
if n in adict:
return adict[n]
adict[n]=6*a(n-1)-6*a(n-2)
return adict[n] # David Nacin, Feb 27 2012
CROSSREFS
Sequence in context: A290916 A014348 A126020 * A151251 A293490 A010849
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 19 2003
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 16:04 EDT 2024. Contains 372880 sequences. (Running on oeis4.)