login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086403
Numerators in continued fraction representation of (e-1)/(e+1).
2
1, 6, 61, 860, 15541, 342762, 8927353, 268163352, 9126481321, 347074453550, 14586253530421, 671314736852916, 33580323096176221, 1814008761930368850, 105246088515057569521, 6527071496695499679152, 430891964870418036393553, 30168964612425958047227862
OFFSET
1,2
REFERENCES
Calvin C. Clawson, "Mathematical Mysteries", Perseus, 1999, p. 225.
LINKS
FORMULA
Partial quotients in continued fraction representation of (e-1)/(e+1) are A016825: [2, 6, 10, 14, 18...], the convergents being: [2] = 1/2, [2, 6] = 6/13, [2, 6, 10] = 61/132...etc.; denominators are A079165 starting with n=1: 2, 13, 132, 1861, 33630, 741721, 19318376... 2. a(n) = closest integer to [(e-1)/(e+1)]*A079165(n), n>0
E.g.f.: sinh((1-sqrt(1-4*x))/2)/sqrt(1-4*x). - Vladimir Kruchinin, Apr 26 2016
a(n) = Sum_{k=1..(n+1)/2} (2*n-2*k+1)!/((2*k-1)!*(n-2*k+1)!). - Vladimir Kruchinin, Apr 26 2016
a(n) = -((-1)^n*sqrt(Pi/exp(1))*BesselI((2*n+1)/2, 1/2))/2 + (BesselK((2*n+1)/2, 1/2)*sinh(1/2))/sqrt(Pi), where BesselI(n,x) is the modified Bessel function of the first kind, BesselK(n,x) is the modified Bessel function of the second kind. - Ilya Gutkovskiy, Apr 26 2016
From Vaclav Kotesovec, Apr 27 2016: (Start)
a(n)/n! ~ BesselI(1/2, 1/2) * 2^(2*n-1) / sqrt(n).
a(n) ~ sinh(1/2) * 2^(2*n + 1/2) * n^n / exp(n).
(End)
EXAMPLE
a(4) = 860 = closest integer to[(e-1)/(e+1)]*A079165(4); = floor(860.0000292...) = 860. 860/1861 = [2, 6, 10, 14] = .462117141...; (e-1)/(e+1) = .462117157...
MAPLE
b:= proc(n) local i, q;
q:= 0;
for i to n do
q:= 1/(q+4*(n-i)+2)
od; q
end:
a:= n-> numer(b(n)):
seq(a(n), n=1..20); # Alois P. Heinz, Feb 03 2012
numtheory:-cfrac((exp(1)-1)/(exp(1)+1), 50, 'convergents'):
map(numer, convergents[2..-2]); # Robert Israel, Apr 26 2016
MATHEMATICA
Numerator@ FromContinuedFraction@ ContinuedFraction[(E - 1)/(E + 1), #] & /@ Range[2, 19] (* Michael De Vlieger, Apr 26 2016 *)
PROG
(Maxima)
a(n):=(sum((2*n-2*k+1)!/((2*k-1)!*(n-2*k+1)!), k, 1, (n+1)/2));
taylor(sinh((1-sqrt(1-4*x))/2)/sqrt(1-4*x), x, 0, 10); /* Vladimir Kruchinin, Apr 26 2016 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Jul 18 2003
EXTENSIONS
More terms from Alois P. Heinz, Feb 03 2012
STATUS
approved