The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086403 Numerators in continued fraction representation of (e-1)/(e+1). 2
1, 6, 61, 860, 15541, 342762, 8927353, 268163352, 9126481321, 347074453550, 14586253530421, 671314736852916, 33580323096176221, 1814008761930368850, 105246088515057569521, 6527071496695499679152, 430891964870418036393553, 30168964612425958047227862 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
REFERENCES
Calvin C. Clawson, "Mathematical Mysteries", Perseus, 1999, p. 225.
LINKS
FORMULA
Partial quotients in continued fraction representation of (e-1)/(e+1) are A016825: [2, 6, 10, 14, 18...], the convergents being: [2] = 1/2, [2, 6] = 6/13, [2, 6, 10] = 61/132...etc.; denominators are A079165 starting with n=1: 2, 13, 132, 1861, 33630, 741721, 19318376... 2. a(n) = closest integer to [(e-1)/(e+1)]*A079165(n), n>0
E.g.f.: sinh((1-sqrt(1-4*x))/2)/sqrt(1-4*x). - Vladimir Kruchinin, Apr 26 2016
a(n) = Sum_{k=1..(n+1)/2} (2*n-2*k+1)!/((2*k-1)!*(n-2*k+1)!). - Vladimir Kruchinin, Apr 26 2016
a(n) = -((-1)^n*sqrt(Pi/exp(1))*BesselI((2*n+1)/2, 1/2))/2 + (BesselK((2*n+1)/2, 1/2)*sinh(1/2))/sqrt(Pi), where BesselI(n,x) is the modified Bessel function of the first kind, BesselK(n,x) is the modified Bessel function of the second kind. - Ilya Gutkovskiy, Apr 26 2016
From Vaclav Kotesovec, Apr 27 2016: (Start)
a(n)/n! ~ BesselI(1/2, 1/2) * 2^(2*n-1) / sqrt(n).
a(n) ~ sinh(1/2) * 2^(2*n + 1/2) * n^n / exp(n).
(End)
EXAMPLE
a(4) = 860 = closest integer to[(e-1)/(e+1)]*A079165(4); = floor(860.0000292...) = 860. 860/1861 = [2, 6, 10, 14] = .462117141...; (e-1)/(e+1) = .462117157...
MAPLE
b:= proc(n) local i, q;
q:= 0;
for i to n do
q:= 1/(q+4*(n-i)+2)
od; q
end:
a:= n-> numer(b(n)):
seq(a(n), n=1..20); # Alois P. Heinz, Feb 03 2012
numtheory:-cfrac((exp(1)-1)/(exp(1)+1), 50, 'convergents'):
map(numer, convergents[2..-2]); # Robert Israel, Apr 26 2016
MATHEMATICA
Numerator@ FromContinuedFraction@ ContinuedFraction[(E - 1)/(E + 1), #] & /@ Range[2, 19] (* Michael De Vlieger, Apr 26 2016 *)
PROG
(Maxima)
a(n):=(sum((2*n-2*k+1)!/((2*k-1)!*(n-2*k+1)!), k, 1, (n+1)/2));
taylor(sinh((1-sqrt(1-4*x))/2)/sqrt(1-4*x), x, 0, 10); /* Vladimir Kruchinin, Apr 26 2016 */
CROSSREFS
Sequence in context: A259271 A047737 A302535 * A049120 A346983 A271841
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Jul 18 2003
EXTENSIONS
More terms from Alois P. Heinz, Feb 03 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 22:32 EDT 2024. Contains 373401 sequences. (Running on oeis4.)