login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271841
Number of set partitions of [2n] having exactly n pairs (m,m+1) such that m is in some block b and m+1 is in block b+1.
2
1, 1, 6, 61, 891, 17081, 404275, 11364373, 368982178, 13564841773, 556179920807, 25136678260282, 1240530238800284, 66339010440041817, 3819462133549622416, 235473674234358044731, 15472450628591543437233, 1079168872840695090981865, 79613621745613390178188361
OFFSET
0,3
LINKS
FORMULA
a(n) = A185982(2n,n).
MAPLE
b:= proc(n, i, m, k) option remember; `if`(k>n, 0, `if`(n=0, 1,
add(`if`(j=i+1 and k=0, 0, b(n-1, j, max(m, j), k-
`if`(j=i+1, 1, 0))), j=1..m+1)))
end:
a:= n-> b(2*n, 1, 0, n):
seq(a(n), n=0..18);
MATHEMATICA
b[n_, i_, m_, k_] := b[n, i, m, k] = If[k > n, 0, If[n == 0, 1, Sum[If[j == i + 1 && k == 0, 0, b[n - 1, j, Max[m, j], k - If[j == i + 1, 1, 0]]], {j, 1, m + 1}]]];
a[n_] := b[2*n, 1, 0, n];
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, May 27 2018, translated from Maple *)
CROSSREFS
Cf. A185982.
Sequence in context: A086403 A049120 A346983 * A361526 A056546 A127695
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 15 2016
STATUS
approved