login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271843
G.f. A(x) satisfies: A(x) = x + A( x*A(x) + x*A(x)^3 ).
1
1, 1, 1, 3, 8, 20, 55, 159, 464, 1383, 4200, 12910, 40112, 125832, 397888, 1266848, 4058263, 13070453, 42297553, 137467673, 448499679, 1468388784, 4822816903, 15886282268, 52468807845, 173718343364, 576466929104, 1916968549390, 6387086400663, 21319636605919, 71284279000874, 238724756808108, 800659887614429, 2689098091847122
OFFSET
1,4
COMMENTS
Compare g.f. to: C(x) = x + C( x*C(x) + x*C(x)^2 ) where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
LINKS
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = 3.51361449558530219727... and c = 0.1466906366440109... . - Vaclav Kotesovec, Apr 16 2016
EXAMPLE
G.f.: A(x) = x + x^2 + x^3 + 3*x^4 + 8*x^5 + 20*x^6 + 55*x^7 + 159*x^8 + 464*x^9 + 1383*x^10 + 4200*x^11 + 12910*x^12 +...
where A(x) = x + A( x*A(x) + x*A(x)^3 ).
RELATED SERIES.
A(x) + A(x)^3 = x + x^2 + 2*x^3 + 6*x^4 + 14*x^5 + 36*x^6 + 103*x^7 + 297*x^8 + 867*x^9 + 2598*x^10 + 7908*x^11 + 24337*x^12 + 75725*x^13 + 237822*x^14
+...
PROG
(PARI) {a(n) = my(A=x+x^2 +x*O(x^n)); for(i=1, n, A = x + subst(A, x, x*A + x*A^3) ) ; polcoeff(A, n)}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A230953 A026995 A018035 * A122228 A018790 A268042
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 15 2016
STATUS
approved