OFFSET
1,4
COMMENTS
Compare g.f. to: C(x) = x + C( x*C(x) + x*C(x)^2 ) where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
LINKS
Paul D. Hanna, Table of n, a(n) for n = 1..300
FORMULA
a(n) ~ c * d^n / n^(3/2), where d = 3.51361449558530219727... and c = 0.1466906366440109... . - Vaclav Kotesovec, Apr 16 2016
EXAMPLE
G.f.: A(x) = x + x^2 + x^3 + 3*x^4 + 8*x^5 + 20*x^6 + 55*x^7 + 159*x^8 + 464*x^9 + 1383*x^10 + 4200*x^11 + 12910*x^12 +...
where A(x) = x + A( x*A(x) + x*A(x)^3 ).
RELATED SERIES.
A(x) + A(x)^3 = x + x^2 + 2*x^3 + 6*x^4 + 14*x^5 + 36*x^6 + 103*x^7 + 297*x^8 + 867*x^9 + 2598*x^10 + 7908*x^11 + 24337*x^12 + 75725*x^13 + 237822*x^14
+...
PROG
(PARI) {a(n) = my(A=x+x^2 +x*O(x^n)); for(i=1, n, A = x + subst(A, x, x*A + x*A^3) ) ; polcoeff(A, n)}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 15 2016
STATUS
approved