login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230953
Boustrophedon transform of odd primes, cf. A065091.
7
3, 8, 20, 53, 154, 505, 1944, 8651, 44046, 252271, 1605874, 11245261, 85907084, 710970323, 6336648426, 60510526207, 616355168958, 6670526004559, 76438597647616, 924584128977111, 11772170758462928, 157382330019694067, 2204239468545788024, 32275035859881159165
OFFSET
0,1
LINKS
J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
FORMULA
a(n) = Sum_{k=0..n} A109449(n,k)*A000040(k+2).
E.g.f.: (sec(x) + tan(x)) * Sum_{k>=0} prime(k+2)*x^k/k!. - Ilya Gutkovskiy, Jun 26 2018
MATHEMATICA
t[n_, 0] := Prime[n+2]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
PROG
(Haskell)
a230953 n = sum $ zipWith (*) (a109449_row n) $ tail a000040_list
(Python)
from itertools import accumulate, count, islice
from sympy import prime
def A230953_gen(): # generator of terms
blist = tuple()
for i in count(2):
yield (blist := tuple(accumulate(reversed(blist), initial=prime(i))))[-1]
A230953_list = list(islice(A230953_gen(), 40)) # Chai Wah Wu, Jun 12 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Nov 03 2013
STATUS
approved