login
A000747
Boustrophedon transform of primes.
8
2, 5, 13, 35, 103, 345, 1325, 5911, 30067, 172237, 1096319, 7677155, 58648421, 485377457, 4326008691, 41310343279, 420783672791, 4553946567241, 52184383350787, 631210595896453, 8036822912123765, 107444407853010597, 1504827158220643895, 22034062627659931905
OFFSET
0,1
LINKS
J. Millar, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54 (Abstract, pdf, ps).
J. Millar, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory Ser. A, 76(1) (1996), 44-54.
Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
N. J. A. Sloane, Transforms.
FORMULA
a(n) = Sum_{k=0..n} A109449(n,k)*A000040(k+1). - Reinhard Zumkeller, Nov 03 2013
E.g.f.: (sec(x) + tan(x)) * Sum_{k>=0} prime(k+1)*x^k/k!. - Ilya Gutkovskiy, Jun 26 2018
MATHEMATICA
t[n_, 0] := Prime[n+1]; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *)
PROG
(Haskell)
a000747 n = sum $ zipWith (*) (a109449_row n) a000040_list
-- Reinhard Zumkeller, Nov 03 2013
(Python)
from itertools import islice, count, accumulate
from sympy import prime
def A000747_gen(): # generator of terms
blist = tuple()
for i in count(1):
yield (blist := tuple(accumulate(reversed(blist), initial=prime(i))))[-1]
A000747_list = list(islice(A000747_gen(), 30)) # Chai Wah Wu, Jun 11 2022
CROSSREFS
KEYWORD
nonn
STATUS
approved