login
A272064
Number of set partitions of [n] such that for each pair of consecutive blocks (b,b+1) exactly one pair of consecutive numbers (i,i+1) exists with i member of b and i+1 member of b+1.
5
1, 1, 2, 5, 13, 35, 102, 332, 1205, 4796, 20640, 95197, 467694, 2435804, 13394117, 77490260, 470198899, 2984034004, 19757370537, 136171758636, 975002124101, 7239322944625, 55648169854405, 442195755123607, 3627392029179270, 30679238282421267, 267215329668444337
OFFSET
0,3
FORMULA
a(n) = A000110(n) - A272065(n).
EXAMPLE
A000110(4) - a(4) = 15 - 13 = 2: 13|24, 13|2|4.
A000110(5) - a(5) = 52 - 35 = 17: 124|35, 124|3|5, 134|25, 134|2|5, 135|24, 13|245, 13|24|5, 135|2|4, 13|25|4, 13|2|45, 13|2|4|5, 14|235, 14|23|5, 14|25|3, 14|2|3|5, 1|24|35, 1|24|3|5.
MAPLE
b:= proc(n, i, m, l) option remember; `if`(n=0,
`if`({l[], 1}={1}, 1, 0), add(`if`(j<m+1 and
j=i+1 and l[j]=1, 0, b(n-1, j, max(m, j),
`if`(j=m+1, [l[], `if`(j=i+1, 1, 0)],
`if`(j=i+1, subsop(j=1, l), l)))), j=1..m+1))
end:
a:= n-> b(n, 0$2, []):
seq(a(n), n=0..18);
MATHEMATICA
b[n_, i_, m_, l_] := b[n, i, m, l] = If[n==0, If[Union[Append[l, 1]] == {1}, 1, 0], Sum[If[j<m+1 && j==i+1 && l[[j]]==1, 0, b[n-1, j, Max[m, j], If[j==m+1, Append[l, If[j==i+1, 1, 0]], If[j==i+1, ReplacePart[l, j -> 1], l]]]], {j, 1, m+1}]]; a[n_] := b[n, 0, 0, {}]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Feb 03 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 19 2016
STATUS
approved