The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A272067 a(n) = (10^n-1)^4. 5
0, 6561, 96059601, 996005996001, 9996000599960001, 99996000059999600001, 999996000005999996000001, 9999996000000599999960000001, 99999996000000059999999600000001, 999999996000000005999999996000000001, 9999999996000000000599999999960000000001, 99999999996000000000059999999999600000000001 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The sum of the digits of a(n) is divisible by 18. For example, 9^4 = 6561 and 6 + 5 + 6 + 1 = 18 * 1.
Number of 9 in a(n) is 2*n-2 for n > 0. - Seiichi Manyama, Sep 18 2018
LINKS
FORMULA
a(n) = A059988(n)^2 = A002283(n)^4.
From Ilya Gutkovskiy, Apr 19 2016: (Start)
O.g.f.: 6561*x*(1 + 100*x)*(1 + 3430*x + 10000*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)*(1 - 10000*x)).
E.g.f.: (1 - 4*exp(9*x) + 6*exp(99*x) - 4*exp(999*x) + exp(9999*x))*exp(x). (End)
EXAMPLE
From Seiichi Manyama, Sep 18 2018: (Start)
n| a(n) can be divided into 4 parts for n > 1.
-+--------------------------------------------
1| 65 61
2| 9 605 9 601
3| 99 6005 99 6001
4| 999 60005 999 60001
(End)
MAPLE
A272067:=n->(10^n-1)^4: seq(A272067(n), n=0..15); # Wesley Ivan Hurt, Apr 19 2016
MATHEMATICA
(10^Range[0, 10] - 1)^4 (* Wesley Ivan Hurt, Apr 19 2016 *)
PROG
(Ruby)
(0..n).each{|i| p ('9' * i).to_i ** 4}
(PARI) a(n) = (10^n-1)^4; \\ Michel Marcus, Apr 19 2016
(Magma) [(10^n-1)^4 : n in [0..10]]; // Wesley Ivan Hurt, Apr 19 2016
CROSSREFS
Sequence in context: A016844 A016892 A016952 * A017024 A017108 A013853
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Apr 19 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 30 04:46 EDT 2024. Contains 372958 sequences. (Running on oeis4.)