The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A272066 a(n) = (10^n-1)^3. 8
 0, 729, 970299, 997002999, 999700029999, 999970000299999, 999997000002999999, 999999700000029999999, 999999970000000299999999, 999999997000000002999999999, 999999999700000000029999999999, 999999999970000000000299999999999, 999999999997000000000002999999999999 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The sum of the digits of a(n) is divisible by 18. For example, 9^3 = 729 and 7 + 2 + 9 = 18 * 1. Number of 9 in a(n) is 2*n-1 for n > 0. - Seiichi Manyama, Sep 18 2018 LINKS FORMULA a(n) = A002283(n)^3. From Ilya Gutkovskiy, Apr 19 2016: (Start) O.g.f.: 729*x*(1 + 220*x + 1000*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)*(1 - 1000*x)). E.g.f.: (-1 + 3*exp(9*x) - 3*exp(99*x) + exp(999*x))*exp(x). (End) EXAMPLE From Seiichi Manyama, Sep 18 2018: (Start) n| a(n) can be divided into 3 parts for n > 1. -+-------------------------------------------- 1|        72    9 2|   9   702   99 3|  99  7002  999 4| 999 70002 9999 (End) MAPLE A272066:=n->(10^n-1)^3: seq(A272066(n), n=0..15); # Wesley Ivan Hurt, Apr 19 2016 MATHEMATICA (10^Range[0, 10] - 1)^3 (* Wesley Ivan Hurt, Apr 19 2016 *) PROG (Ruby) (0..n).each{|i| p ('9' * i).to_i ** 3} (PARI) a(n) = (10^n-1)^3; \\ Michel Marcus, Apr 19 2016 (MAGMA) [(10^n-1)^3 : n in [0..10]]; // Wesley Ivan Hurt, Apr 19 2016 CROSSREFS Cf. A002283, A059988, A272067, A272068, A319358. Sequence in context: A223979 A223574 A184692 * A017022 A017106 A017202 Adjacent sequences:  A272063 A272064 A272065 * A272067 A272068 A272069 KEYWORD nonn,easy AUTHOR Seiichi Manyama, Apr 19 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 21:08 EDT 2022. Contains 356026 sequences. (Running on oeis4.)