The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A272065 Number of set partitions of [n] such that at least one pair of consecutive blocks (b,b+1) exists having not exactly one pair of consecutive numbers (i,i+1) with i member of b and i+1 member of b+1. 2
 0, 0, 0, 0, 2, 17, 101, 545, 2935, 16351, 95335, 583373, 3745903, 25208633, 177505205, 1305468285, 10009943248, 79880835800, 662319435622, 5696570446421, 50749156111271, 467630493212126, 4451067568592918, 43709810099960739, 442331477265626019 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Wikipedia, Partition of a set FORMULA a(n) = A000110(n) - A272064(n). EXAMPLE a(4) = 2: 13|24, 13|2|4. a(5) = 17: 124|35, 124|3|5, 134|25, 134|2|5, 135|24, 13|245, 13|24|5, 135|2|4, 13|25|4, 13|2|45, 13|2|4|5, 14|235, 14|23|5, 14|25|3, 14|2|3|5, 1|24|35, 1|24|3|5. MAPLE b:= proc(n, i, m, l) option remember; `if`(n=0,       `if`({l[], 1}={1}, 1, 0), add(`if`(j combinat[bell](n)-b(n, 0\$2, []): seq(a(n), n=0..18); MATHEMATICA b[n_, i_, m_, l_] := b[n, i, m, l] = If[n == 0, If[Union[Append[l, 1]] == {1}, 1, 0], Sum[If[j < m+1 && j == i+1 && l[[j]] == 1, 0, b[n-1, j, Max[m, j], If[j == m+1, Append[l, If[j == i+1, 1, 0]], If[j == i+1, ReplacePart[l, j -> 1], l]]]], {j, 1, m+1}]]; a[n_] := BellB[n]-b[n, 0, 0, {}]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Feb 03 2017, translated from Maple *) CROSSREFS Cf. A000110, A185982, A271271, A272064. Sequence in context: A023260 A174365 A119363 * A129977 A213787 A105652 Adjacent sequences:  A272062 A272063 A272064 * A272066 A272067 A272068 KEYWORD nonn AUTHOR Alois P. Heinz, Apr 19 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 13:52 EDT 2022. Contains 355989 sequences. (Running on oeis4.)