login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272065
Number of set partitions of [n] such that at least one pair of consecutive blocks (b,b+1) exists having not exactly one pair of consecutive numbers (i,i+1) with i member of b and i+1 member of b+1.
2
0, 0, 0, 0, 2, 17, 101, 545, 2935, 16351, 95335, 583373, 3745903, 25208633, 177505205, 1305468285, 10009943248, 79880835800, 662319435622, 5696570446421, 50749156111271, 467630493212126, 4451067568592918, 43709810099960739, 442331477265626019
OFFSET
0,5
FORMULA
a(n) = A000110(n) - A272064(n).
EXAMPLE
a(4) = 2: 13|24, 13|2|4.
a(5) = 17: 124|35, 124|3|5, 134|25, 134|2|5, 135|24, 13|245, 13|24|5, 135|2|4, 13|25|4, 13|2|45, 13|2|4|5, 14|235, 14|23|5, 14|25|3, 14|2|3|5, 1|24|35, 1|24|3|5.
MAPLE
b:= proc(n, i, m, l) option remember; `if`(n=0,
`if`({l[], 1}={1}, 1, 0), add(`if`(j<m+1 and
j=i+1 and l[j]=1, 0, b(n-1, j, max(m, j),
`if`(j=m+1, [l[], `if`(j=i+1, 1, 0)],
`if`(j=i+1, subsop(j=1, l), l)))), j=1..m+1))
end:
a:= n-> combinat[bell](n)-b(n, 0$2, []):
seq(a(n), n=0..18);
MATHEMATICA
b[n_, i_, m_, l_] := b[n, i, m, l] = If[n == 0, If[Union[Append[l, 1]] == {1}, 1, 0], Sum[If[j < m+1 && j == i+1 && l[[j]] == 1, 0, b[n-1, j, Max[m, j], If[j == m+1, Append[l, If[j == i+1, 1, 0]], If[j == i+1, ReplacePart[l, j -> 1], l]]]], {j, 1, m+1}]]; a[n_] := BellB[n]-b[n, 0, 0, {}]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Feb 03 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 19 2016
STATUS
approved