|
|
A271271
|
|
Number of set partitions of [n] such that at least one pair of consecutive blocks (b,b+1) exists having no pair of consecutive numbers (i,i+1) with i member of b and i+1 member of b+1.
|
|
4
|
|
|
0, 0, 0, 0, 1, 9, 58, 341, 1983, 11776, 72345, 462173, 3075894, 21330762, 154050330, 1157493707, 9037925277, 73244123107, 615295131046, 5351329029624, 48126530239366, 447043890866154, 4284293705043796, 42317095568379559, 430355360965092107, 4501973706497500364
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,6
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
a(4) = 1: 13|2|4.
a(5) = 9: 124|3|5, 134|2|5, 135|2|4, 13|25|4, 13|2|45, 13|2|4|5, 14|23|5, 14|2|3|5, 1|24|3|5.
|
|
MAPLE
|
b:= proc(n, i, m, l) option remember; `if`(n=0,
`if`(l=[] or {l[]}={1}, 1, 0), add(b(n-1, j, max(m, j),
`if`(j=m+1, `if`(j=i+1, [l[], 1], [l[], 0]),
`if`(j=i+1, subsop(j=1, l), l))), j=1..m+1))
end:
a:= n-> combinat[bell](n)-b(n, 0$2, []):
seq(a(n), n=0..18);
|
|
MATHEMATICA
|
b[n_, i_, m_, l_] := b[n, i, m, l] = If[n == 0, If[Union[l, {1}] == {1}, 1, 0], Sum[b[n-1, j, Max[m, j], If[j == m+1, Join[l, If[j == i+1, {1}, {0}] ], If[j == i+1, ReplacePart[l, j -> 1], l]]], {j, 1, m+1}]]; a[n_] := BellB[n] - b[n, 0, 0, {}]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Feb 02 2017, translated from Maple *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|