login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271270
Number of set partitions of [n] such that for each pair of consecutive blocks (b,b+1) at least one pair of consecutive numbers (i,i+1) exists with i member of b and i+1 member of b+1.
6
1, 1, 2, 5, 14, 43, 145, 536, 2157, 9371, 43630, 216397, 1137703, 6313675, 36848992, 225464838, 1442216870, 9620746697, 66781675113, 481413175433, 3597627996006, 27825925290597, 222422033403527, 1834910286704787, 15603508329713182, 136616625732498989
OFFSET
0,3
FORMULA
a(n) = A000110(n) - A271271(n).
EXAMPLE
A000110(4) - a(4) = 15 - 14 = 1: 13|2|4.
A000110(5) - a(5) = 52 - 43 = 9: 124|3|5, 134|2|5, 135|2|4, 13|25|4, 13|2|45, 13|2|4|5, 14|23|5, 14|2|3|5, 1|24|3|5.
MAPLE
b:= proc(n, i, m, l) option remember; `if`(n=0,
`if`({l[], 1}={1}, 1, 0), add(b(n-1, j, max(m, j),
`if`(j=m+1, [l[], `if`(j=i+1, 1, 0)],
`if`(j=i+1, subsop(j=1, l), l))), j=1..m+1))
end:
a:= n-> b(n, 0$2, []):
seq(a(n), n=0..18);
MATHEMATICA
b[n_, i_, m_, l_] := b[n, i, m, l] = If[n == 0, If[Union[l, {1}] == {1}, 1, 0], Sum[b[n-1, j, Max[m, j], If[j == m+1, Join[l, If[j == i+1, {1}, {0}] ], If[j == i+1, ReplacePart[l, j -> 1], l]]], {j, 1, m+1}]]; a[n_] := b[n, 0, 0, {}]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Jan 30 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 03 2016
STATUS
approved