login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271270 Number of set partitions of [n] such that for each pair of consecutive blocks (b,b+1) at least one pair of consecutive numbers (i,i+1) exists with i member of b and i+1 member of b+1. 6
1, 1, 2, 5, 14, 43, 145, 536, 2157, 9371, 43630, 216397, 1137703, 6313675, 36848992, 225464838, 1442216870, 9620746697, 66781675113, 481413175433, 3597627996006, 27825925290597, 222422033403527, 1834910286704787, 15603508329713182, 136616625732498989 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..25.

Wikipedia, Partition of a set

FORMULA

a(n) = A000110(n) - A271271(n).

EXAMPLE

A000110(4) - a(4) = 15 - 14 = 1: 13|2|4.

A000110(5) - a(5) = 52 - 43 = 9: 124|3|5, 134|2|5, 135|2|4, 13|25|4, 13|2|45, 13|2|4|5, 14|23|5, 14|2|3|5, 1|24|3|5.

MAPLE

b:= proc(n, i, m, l) option remember; `if`(n=0,

      `if`({l[], 1}={1}, 1, 0), add(b(n-1, j, max(m, j),

      `if`(j=m+1, [l[], `if`(j=i+1, 1, 0)],

      `if`(j=i+1, subsop(j=1, l), l))), j=1..m+1))

    end:

a:= n-> b(n, 0$2, []):

seq(a(n), n=0..18);

MATHEMATICA

b[n_, i_, m_, l_] := b[n, i, m, l] = If[n == 0, If[Union[l, {1}] == {1}, 1, 0], Sum[b[n-1, j, Max[m, j], If[j == m+1, Join[l, If[j == i+1, {1}, {0}] ], If[j == i+1, ReplacePart[l, j -> 1], l]]], {j, 1, m+1}]]; a[n_] := b[n, 0, 0, {}]; Table[a[n], {n, 0, 18}] (* Jean-Fran├žois Alcover, Jan 30 2017, translated from Maple *)

CROSSREFS

Cf. A000110, A185982, A271271, A271272, A272064.

Sequence in context: A160701 A137551 A148333 * A201497 A122993 A137552

Adjacent sequences:  A271267 A271268 A271269 * A271271 A271272 A271273

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Apr 03 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 3 08:21 EDT 2021. Contains 346435 sequences. (Running on oeis4.)