Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jan 30 2017 09:09:14
%S 1,1,2,5,14,43,145,536,2157,9371,43630,216397,1137703,6313675,
%T 36848992,225464838,1442216870,9620746697,66781675113,481413175433,
%U 3597627996006,27825925290597,222422033403527,1834910286704787,15603508329713182,136616625732498989
%N Number of set partitions of [n] such that for each pair of consecutive blocks (b,b+1) at least one pair of consecutive numbers (i,i+1) exists with i member of b and i+1 member of b+1.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>
%F a(n) = A000110(n) - A271271(n).
%e A000110(4) - a(4) = 15 - 14 = 1: 13|2|4.
%e A000110(5) - a(5) = 52 - 43 = 9: 124|3|5, 134|2|5, 135|2|4, 13|25|4, 13|2|45, 13|2|4|5, 14|23|5, 14|2|3|5, 1|24|3|5.
%p b:= proc(n, i, m, l) option remember; `if`(n=0,
%p `if`({l[], 1}={1}, 1, 0), add(b(n-1, j, max(m, j),
%p `if`(j=m+1, [l[], `if`(j=i+1, 1, 0)],
%p `if`(j=i+1, subsop(j=1, l), l))), j=1..m+1))
%p end:
%p a:= n-> b(n, 0$2, []):
%p seq(a(n), n=0..18);
%t b[n_, i_, m_, l_] := b[n, i, m, l] = If[n == 0, If[Union[l, {1}] == {1}, 1, 0], Sum[b[n-1, j, Max[m, j], If[j == m+1, Join[l, If[j == i+1, {1}, {0}] ], If[j == i+1, ReplacePart[l, j -> 1], l]]], {j, 1, m+1}]]; a[n_] := b[n, 0, 0, {}]; Table[a[n], {n, 0, 18}] (* _Jean-François Alcover_, Jan 30 2017, translated from Maple *)
%Y Cf. A000110, A185982, A271271, A271272, A272064.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Apr 03 2016