login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122993
Expansion of g.f.: A(x) = Product_{n>=0} 1/( 1 - x/(1-x)^n )^( 1/2^(n+1) ).
2
1, 1, 2, 5, 14, 43, 145, 538, 2194, 9796, 47635, 250811, 1421509, 8623112, 55693506, 381175374, 2753122695, 20909082797, 166448275680, 1385010594903, 12016912542681, 108481226052096, 1016937780320981, 9882191461530141
OFFSET
0,3
LINKS
FORMULA
From Paul D. Hanna, Sep 16 2018: (Start)
G.f.: exp( Sum_{n>=0} -log(1 - x/(1-x)^n) / 2^(n+1) ).
G.f.: exp( Sum_{n>=1} x^n / (n*(2 - 1/(1-x)^n)) ). (End)
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 43*x^5 + 145*x^6 + 538*x^7 + 2194*x^8 + 9796*x^9 + 47635*x^10 + ...
such that
A(x) = (1-x)^(-1/2) * (1 - x/(1-x))^(-1/4) * (1 - x/(1-x)^2)^(-1/8) * (1 - x/(1-x)^3)^(-1/16) * ...
RELATED SERIES.
The logarithm of the g.f. can be expressed as
log(A(x)) = x/(2 - 1/(1-x)) + x^2/(2*(2 - 1/(1-x)^2)) + x^3/(3*(2 - 1/(1-x)^3)) + x^4/(4*(2 - 1/(1-x)^4)) + x^5/(5*(2 - 1/(1-x)^5)) + x^6/(6*(2 - 1/(1-x)^6)) + ...
explicitly,
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 35*x^4/4 + 131*x^5/5 + 534*x^6/6 + 2381*x^7/7 + 11555*x^8/8 + 60580*x^9/9 + 340813*x^10/10 + ...
MATHEMATICA
terms = 24;
gf = Exp[Sum[-2^(-n-1) Log[1-x/(1-x)^n] + O[x]^terms, {n, 0, 5 terms}]];
CoefficientList[gf, x][[1 ;; terms]] // Round (* Jean-François Alcover, Sep 10 2018 *)
PROG
(PARI) {a(n)=round(polcoeff(prod(i=0, 6*n+10, 1/(1-x/(1-x)^i +x*O(x^n))^(1/2^(i+1))), n))}
(PARI) {a(n)=local(A); if(n<0, 0, A=1+O(x); for(k=1, n, A=truncate(A)+x*O(x^k); A+=substvec(A, [x, y], [x/(1-x*y+O(x^k)), y*(1-x*y)]) -A^2*(1-x)); subst(polcoeff(A, n), y, 1))} /* Michael Somos, Oct 21 2006 */
CROSSREFS
Cf. A122992.
Sequence in context: A148333 A271270 A201497 * A137552 A137553 A149881
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 23 2006
STATUS
approved