login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f.: A(x) = Product_{n>=0} 1/( 1 - x/(1-x)^n )^( 1/2^(n+1) ).
2

%I #29 Jul 10 2023 10:28:52

%S 1,1,2,5,14,43,145,538,2194,9796,47635,250811,1421509,8623112,

%T 55693506,381175374,2753122695,20909082797,166448275680,1385010594903,

%U 12016912542681,108481226052096,1016937780320981,9882191461530141

%N Expansion of g.f.: A(x) = Product_{n>=0} 1/( 1 - x/(1-x)^n )^( 1/2^(n+1) ).

%H David Callan, <a href="http://arxiv.org/abs/1111.6297">A permutation pattern that illustrates the strong law of small numbers</a>, arXiv:1111.6297 [math.CO], 2011.

%H Lara Pudwell, <a href="https://doi.org/10.37236/301">Enumeration schemes for permutations avoiding barred patterns</a>, El. J. Combinat. 17 (1) (2010) R29.

%F From _Paul D. Hanna_, Sep 16 2018: (Start)

%F G.f.: exp( Sum_{n>=0} -log(1 - x/(1-x)^n) / 2^(n+1) ).

%F G.f.: exp( Sum_{n>=1} x^n / (n*(2 - 1/(1-x)^n)) ). (End)

%e G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 43*x^5 + 145*x^6 + 538*x^7 + 2194*x^8 + 9796*x^9 + 47635*x^10 + ...

%e such that

%e A(x) = (1-x)^(-1/2) * (1 - x/(1-x))^(-1/4) * (1 - x/(1-x)^2)^(-1/8) * (1 - x/(1-x)^3)^(-1/16) * ...

%e RELATED SERIES.

%e The logarithm of the g.f. can be expressed as

%e log(A(x)) = x/(2 - 1/(1-x)) + x^2/(2*(2 - 1/(1-x)^2)) + x^3/(3*(2 - 1/(1-x)^3)) + x^4/(4*(2 - 1/(1-x)^4)) + x^5/(5*(2 - 1/(1-x)^5)) + x^6/(6*(2 - 1/(1-x)^6)) + ...

%e explicitly,

%e log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 35*x^4/4 + 131*x^5/5 + 534*x^6/6 + 2381*x^7/7 + 11555*x^8/8 + 60580*x^9/9 + 340813*x^10/10 + ...

%t terms = 24;

%t gf = Exp[Sum[-2^(-n-1) Log[1-x/(1-x)^n] + O[x]^terms, {n, 0, 5 terms}]];

%t CoefficientList[gf, x][[1 ;; terms]] // Round (* _Jean-François Alcover_, Sep 10 2018 *)

%o (PARI) {a(n)=round(polcoeff(prod(i=0,6*n+10,1/(1-x/(1-x)^i +x*O(x^n))^(1/2^(i+1))),n))}

%o (PARI) {a(n)=local(A); if(n<0, 0, A=1+O(x); for(k=1, n, A=truncate(A)+x*O(x^k); A+=substvec(A, [x, y], [x/(1-x*y+O(x^k)), y*(1-x*y)]) -A^2*(1-x)); subst(polcoeff(A, n), y, 1))} /* _Michael Somos_, Oct 21 2006 */

%Y Cf. A122992.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Sep 23 2006