|
|
A272062
|
|
Positive numbers k such that k^2 - 1 divides 8^k - 1.
|
|
2
|
|
|
2, 4, 8, 10, 16, 22, 36, 40, 64, 96, 100, 196, 210, 256, 280, 316, 456, 560, 820, 1200, 1236, 1296, 1360, 1408, 1600, 1870, 2380, 2556, 3516, 3616, 4096, 4200, 4356, 5656, 6112, 6256, 6480, 8008, 8688, 10192, 10356, 11440, 11952, 12160, 13728, 14950, 16192, 17020, 19432, 21880, 22036
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
From Robert Israel, Jun 08 2018: (Start)
All terms are even.
Are 2, 8 and 560 the only terms == 2 (mod 6)? There are no others up to 3*10^9. (End)
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..2559
|
|
EXAMPLE
|
a(1) = 2 because (8^2 - 1)/(2^2 - 1) = 21.
|
|
MAPLE
|
A272062:=n->`if`((8^n-1) mod (n^2-1) = 0, n, NULL): seq(A272062(n), n=2..5*10^4); # Wesley Ivan Hurt, Apr 21 2016
|
|
MATHEMATICA
|
Select[Range[2, 22100], Divisible[8^# - 1, #^2 - 1] &] (* Michael De Vlieger, Apr 19 2016 *)
|
|
PROG
|
(MAGMA) [0] cat [n: n in [2..30000] | Denominator((8^n-1)/(n^2-1)) eq 1];
(PARI) is(n)=Mod(8, n^2-1)^n==1 \\ Charles R Greathouse IV, Apr 19 2016
|
|
CROSSREFS
|
Cf. positive numbers n such that n^2 - 1 divides (2^k)^n - 1: A247219 (k=1), A271842 (k=2), this sequence (k=3).
Sequence in context: A335239 A102248 A161374 * A045795 A226816 A335238
Adjacent sequences: A272059 A272060 A272061 * A272063 A272064 A272065
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Juri-Stepan Gerasimov, Apr 19 2016
|
|
STATUS
|
approved
|
|
|
|