The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A272062 Positive numbers k such that k^2 - 1 divides 8^k - 1. 2
 2, 4, 8, 10, 16, 22, 36, 40, 64, 96, 100, 196, 210, 256, 280, 316, 456, 560, 820, 1200, 1236, 1296, 1360, 1408, 1600, 1870, 2380, 2556, 3516, 3616, 4096, 4200, 4356, 5656, 6112, 6256, 6480, 8008, 8688, 10192, 10356, 11440, 11952, 12160, 13728, 14950, 16192, 17020, 19432, 21880, 22036 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS From Robert Israel, Jun 08 2018: (Start) All terms are even. Are 2, 8 and 560 the only terms == 2 (mod 6)?  There are no others up to 3*10^9. (End) LINKS Robert Israel, Table of n, a(n) for n = 1..2559 EXAMPLE a(1) = 2 because (8^2 - 1)/(2^2 - 1) = 21. MAPLE A272062:=n->`if`((8^n-1) mod (n^2-1) = 0, n, NULL): seq(A272062(n), n=2..5*10^4); # Wesley Ivan Hurt, Apr 21 2016 MATHEMATICA Select[Range[2, 22100], Divisible[8^# - 1, #^2 - 1] &] (* Michael De Vlieger, Apr 19 2016 *) PROG (MAGMA) [0] cat [n: n in [2..30000] | Denominator((8^n-1)/(n^2-1)) eq 1]; (PARI) is(n)=Mod(8, n^2-1)^n==1 \\ Charles R Greathouse IV, Apr 19 2016 CROSSREFS Cf. positive numbers n such that n^2 - 1 divides (2^k)^n - 1: A247219 (k=1), A271842 (k=2), this sequence (k=3). Sequence in context: A335239 A102248 A161374 * A045795 A226816 A335238 Adjacent sequences:  A272059 A272060 A272061 * A272063 A272064 A272065 KEYWORD nonn AUTHOR Juri-Stepan Gerasimov, Apr 19 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 12 23:52 EDT 2022. Contains 356077 sequences. (Running on oeis4.)