login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272060
Numbers k such that sigma((k-1)/2) + tau((k-1)/2) is prime.
3
3, 5, 17, 257, 325, 1025, 65537, 82945, 202501, 250001, 2829125, 7496645, 10240001, 13675205, 16000001, 27060805, 48469445, 71402501, 133448705, 150062501, 156250001, 172186885, 182250001, 343064485, 354117125, 453519617, 467943425, 1235663105
OFFSET
1,1
COMMENTS
Numbers k such that A000203((k-1)/2) + A000005((k-1)/2) is a prime q.
Corresponding values of primes q are in A055813.
Prime terms are in A272061.
The first 5 known Fermat primes from A019434 are in this sequence.
LINKS
FORMULA
a(n) = 2*A064205(n) + 1.
EXAMPLE
sigma((17-1)/2) + tau((17-1)/2) = sigma(8) + tau(8) = 15 + 4 = 19; 19 is prime, so 17 is in the sequence.
MATHEMATICA
Select[Range[3, 10^7, 2], PrimeQ[DivisorSigma[1, #] + DivisorSigma[0, #]] &[(# - 1)/2] &] (* Michael De Vlieger, Apr 20 2016 *)
PROG
(Magma) [n: n in [3..1000000] | IsPrime(NumberOfDivisors((n-1) div 2) + SumOfDivisors((n-1) div 2)) and (n-1) mod 2 eq 0]
(PARI) isok(n) = isprime(sigma((n-1)/2) + numdiv((n-1)/2));
lista(nn) = forstep (n=3, nn, 2, if (isok(n), print1(n, ", "))); \\ Michel Marcus, Apr 19 2016
(PARI) is(n)=my(f=factor(n\2)); n>2 && isprime(sigma(f)+numdiv(f)) && isprime(n) \\ Charles R Greathouse IV, Apr 29 2016
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Apr 19 2016
STATUS
approved