login
A272059
Numbers k such that (17*10^k + 13)/3 is prime.
0
1, 2, 4, 7, 10, 13, 15, 20, 22, 33, 34, 108, 117, 130, 193, 273, 280, 654, 775, 1144, 4014, 4015, 7701, 10356, 11478, 12427, 15075, 44107, 102597, 118635
OFFSET
1,2
COMMENTS
For k > 1, numbers k such that the digit 5 followed by k-2 occurrences of the digit 6 followed by the digits 71 is prime (see Example section).
a(31) > 2*10^5.
EXAMPLE
4 is in this sequence because (17*10^4 + 13)/3 = 56671 is prime.
Initial terms and associated primes:
a(1) = 1, 61;
a(2) = 2, 571:
a(3) = 4, 56671;
a(4) = 7, 56666671;
a(5) = 10, 56666666671, etc.
MATHEMATICA
Select[Range[0, 100000], PrimeQ[(17*10^# + 13)/3] &]
PROG
(PARI) is(n)=ispseudoprime((17*10^n + 13)/3) \\ Charles R Greathouse IV, Jun 13 2017
KEYWORD
nonn,more
AUTHOR
Robert Price, May 19 2016
EXTENSIONS
a(29)-a(30) from Robert Price, Jan 22 2019
STATUS
approved