login
A272056
Decimal expansion of the variance of the degree (valency) of the root of a random rooted tree with n vertices.
1
1, 4, 7, 4, 1, 7, 2, 6, 8, 6, 8, 9, 7, 8, 7, 3, 7, 3, 6, 3, 3, 4, 3, 4, 1, 8, 2, 3, 3, 9, 7, 5, 5, 0, 0, 1, 2, 8, 4, 9, 6, 2, 3, 6, 0, 4, 9, 5, 5, 5, 8, 0, 9, 0, 8, 0, 2, 0, 4, 2, 1, 8, 7, 8, 4, 5, 3, 9, 1, 3, 7, 3, 9, 6, 6, 5, 0, 0, 9, 3, 8, 7, 0, 2, 8, 1, 3, 6, 7, 2, 8, 6, 6, 6, 4, 0, 2, 7
OFFSET
1,2
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's tree enumeration constants, p. 303.
LINKS
A. Meir and J. W. Moon, On the altitude of nodes in random trees, Canad. J. Math. 30(1978), 997-1015 Published:1978-10-01, page 1011.
FORMULA
1 + Sum_{j>=1} T_j*(2alpha^j-1)/(alpha^j*(alpha^j-1)^2), where T_j is A000081(j) and alpha A051491.
EXAMPLE
1.47417268689787373633434182339755001284962360495558090802...
MATHEMATICA
Clear[v]; digits = 98; m0 = 400; dm = 100; v[max_] := v[max] = (Clear[T, s, a]; T[0] = 0; T[1] = 1; T[n_] := T[n] = Sum[Sum[d*T[d], {d, Divisors[j] }]*T[n - j], {j, 1, n - 1}]/(n - 1); s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2*k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n - 1, k]*k, {k, 1, n - 1}]/(n - 1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; eq = Log[c] == 1 + Sum[A[c^-k]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits + 5]; 1 + Sum[T[j]*(2 alpha^j - 1)/ (alpha^j*(alpha^j - 1)^2), {j, 1, max}]); v[m0]; v[max = m0 + dm]; While[ Print["max = ", max]; RealDigits[v[max], 10, digits] != RealDigits[ v[max - dm], 10, digits], max = max + dm]; RealDigits[v[max], 10, digits] // First
CROSSREFS
Cf. A000081 (T_n), A051491 (alpha), A261124 (expected degree).
Sequence in context: A365945 A365943 A201412 * A020803 A019626 A203137
KEYWORD
nonn,cons
AUTHOR
STATUS
approved