login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A261124 Decimal expansion of 'theta', the expected degree (valency) of the root of a random rooted tree with n vertices. 1
2, 1, 9, 1, 8, 3, 7, 4, 0, 3, 1, 9, 7, 1, 2, 6, 3, 0, 6, 4, 7, 8, 6, 9, 9, 5, 0, 2, 8, 5, 7, 5, 3, 6, 4, 9, 1, 1, 0, 6, 1, 8, 3, 5, 0, 7, 5, 8, 2, 4, 5, 0, 3, 8, 1, 5, 6, 3, 4, 4, 9, 2, 7, 7, 9, 1, 6, 4, 2, 8, 1, 3, 0, 3, 1, 8, 2, 8, 4, 1, 1, 5, 0, 4, 3, 0, 0, 7, 6, 4, 3, 6, 3, 8, 8, 8, 7, 3, 6, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's tree enumeration constants, p. 303.

LINKS

Table of n, a(n) for n=1..100.

A. Meir and J. W. Moon, On the altitude of nodes in random trees. Canad. J. Math. 30(1978), 997-1015  Published:1978-10-01, page 1011.

FORMULA

theta = 2 + Sum_{j>=1} T_j/(alpha^j*(alpha^j-1)), where T_j is A000081(j) and alpha A051491.

EXAMPLE

2.19183740319712630647869950285753649110618350758245...

MATHEMATICA

Clear[th]; digits = 100; m0 = 100; dm = 100; th[max_] := th[max] = (Clear[T, s, a]; T[0] = 0; T[1] = 1; T[n_] := T[n] = Sum[Sum[d*T[d], {d, Divisors[j]} ] * T[n-j], {j, 1, n-1}]/(n-1); s[n_, k_] := s[n, k] = a[n+1-k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; eq = Log[c] == 1 + Sum[ A[c^-k]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits + 5]; 2+Sum[T[j]*1/(alpha^j*(alpha^j-1)), {j, 1, max}]); th[m0]; th[max = m0 + dm]; While[Print["max = ", max]; RealDigits[th[max], 10, digits] != RealDigits[th[max - dm], 10, digits], max = max + dm]; theta = th[max]; RealDigits[theta, 10, digits] // First

CROSSREFS

Cf. A000081 (T_n), A051491 (alpha).

Sequence in context: A206243 A316711 A187549 * A100945 A133399 A128751

Adjacent sequences:  A261121 A261122 A261123 * A261125 A261126 A261127

KEYWORD

cons,nonn

AUTHOR

Jean-Fran├žois Alcover, Aug 09 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 15:16 EDT 2020. Contains 333107 sequences. (Running on oeis4.)