OFFSET
0,6
COMMENTS
LINKS
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(-x^12)^2 * psi(-x^2)^2 / (psi(x) * psi(-x^3)) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of eta(q) * eta(q^6) * eta(q^8)^2 * eta(q^12)^3 / (eta(q^3) * eta(q^4)^2 * eta(q^24)^2) in powers of q.
Euler transform of period 24 sequence [ -1, -1, 0, 1, -1, -1, -1, -1, 0, -1, -1, -2, -1, -1, 0, -1, -1, -1, -1, 1, 0, -1, -1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (96 t)) = 384^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A261119.
EXAMPLE
G.f. = 1 - x - x^2 + x^3 + x^4 - 2*x^5 - x^6 + 2*x^7 + x^8 - x^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 2^(1/2) EllipticTheta[ 4, 0, x^12]^2 EllipticTheta[ 2, Pi/4, x]^2 / (EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, Pi/4, x^(3/2)]), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A) * eta(x^8 + A)^2 * eta(x^12 + A)^3 / (eta(x^3 + A) * eta(x^4 + A)^2 * eta(x^24 + A)^2), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 09 2015
STATUS
approved