login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261122
Expansion of f(-x) * f(x^4, x^8)^2 / f(-x^3, -x^9) in powers of x where f(,) is Ramanujan's general theta function.
2
1, -1, -1, 1, 1, -2, -1, 2, 1, -1, -2, 2, 1, 0, -2, 2, 1, 0, -1, 0, 2, -2, -2, 0, 1, -3, 0, 1, 2, -2, -2, 2, 1, -2, 0, 4, 1, 0, 0, 0, 2, 0, -2, 0, 2, -2, 0, 0, 1, -3, -3, 0, 0, -2, -1, 4, 2, 0, -2, 2, 2, 0, -2, 2, 1, 0, -2, 0, 0, 0, -4, 0, 1, -2, 0, 3, 0, -4
OFFSET
0,6
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
FORMULA
Expansion of phi(-x^12)^2 * psi(-x^2)^2 / (psi(x) * psi(-x^3)) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of eta(q) * eta(q^6) * eta(q^8)^2 * eta(q^12)^3 / (eta(q^3) * eta(q^4)^2 * eta(q^24)^2) in powers of q.
Euler transform of period 24 sequence [ -1, -1, 0, 1, -1, -1, -1, -1, 0, -1, -1, -2, -1, -1, 0, -1, -1, -1, -1, 1, 0, -1, -1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (96 t)) = 384^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A261119.
a(n) = (-1)^(n + floor(n/2)) * A000377(n) = (-1)^floor(n/2) * A190611(n).
a(2*n) = A190611(n). a(2*n + 1) = - A190615(n). a(4*n) = A000377(n). a(4*n + 1) = - A261118(n). a(4*n + 2) = - A129402(n). a(4*n + 3) - A261119(n).
EXAMPLE
G.f. = 1 - x - x^2 + x^3 + x^4 - 2*x^5 - x^6 + 2*x^7 + x^8 - x^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 2^(1/2) EllipticTheta[ 4, 0, x^12]^2 EllipticTheta[ 2, Pi/4, x]^2 / (EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, Pi/4, x^(3/2)]), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A) * eta(x^8 + A)^2 * eta(x^12 + A)^3 / (eta(x^3 + A) * eta(x^4 + A)^2 * eta(x^24 + A)^2), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 09 2015
STATUS
approved