|
|
A000377
|
|
Expansion of f(-q^3) * f(-q^8) * chi(-q^12) / chi(-q) in powers of q where chi(), f() are Ramanujan theta functions.
|
|
14
|
|
|
1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 0, 2, 2, 1, 0, 1, 0, 2, 2, 2, 0, 1, 3, 0, 1, 2, 2, 2, 2, 1, 2, 0, 4, 1, 0, 0, 0, 2, 0, 2, 0, 2, 2, 0, 0, 1, 3, 3, 0, 0, 2, 1, 4, 2, 0, 2, 2, 2, 0, 2, 2, 1, 0, 2, 0, 0, 0, 4, 0, 1, 2, 0, 3, 0, 4, 0, 2, 2, 1, 0, 2, 2, 0, 0, 2, 2, 0, 2, 0, 0, 2, 0, 0, 1, 2, 3, 2, 3, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,6
|
|
COMMENTS
|
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 42 of the 74 eta-quotients listed in Table I of Martin (1996).
|
|
REFERENCES
|
George E. Andrews, editor, P. A. MacMahon: Collected Papers Volume II, MIT Press, 1986, p. 260.
Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 81, Eq. (32.5).
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 0..10000
George E. Andrews, Nathan Fine 1916-1994, Notices Amer. Math. Soc., 42 (No. 6, 1995), 678-679.
Alexander Berkovich and Hamza Yesilyurt, Ramanujan's identities and representation of integers by certain binary and quaternary quadratic forms, The Ramanujan Journal, Vol. 20, No. 3 (2009), pp. 375-408; arXiv preprint, arXiv:math/0611300 [math.NT], 2006-2007.
Michael Gilleland, Some Self-Similar Integer Sequences.
Yves Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc., Vol. 348, No. 12 (1996), 4825-4856, see page 4852 Table I.
Michael Somos, Index to Yves Martin's list of 74 multiplicative eta-quotients and their A-numbers.
Michael Somos, Introduction to Ramanujan theta functions.
Eric Weisstein's World of Mathematics, Fine's Equation.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
|
|
FORMULA
|
Expansion of (phi(q) * phi(q^6) + phi(q^2) * phi(q^3)) / 2 = psi(-q^2) * psi(-q^3) * chi(-q^6) * chi(-q^12) / (chi(-q) * chi(-q^2)) in powers of q where phi(), psi(), chi() are Ramanujan theta functions. - Michael Somos, Jan 26 2006
Expansion of eta(q^2) * eta(q^3) * eta(q^8) * eta(q^12) / (eta(q) * eta(q^24)) in powers of q.
Multiplicative with a(0) = 1, a(2^e) = a(3^e) = 1, a(p^e) = e+1 if p == 1, 5, 7, 11 (mod 24), a(p^e) = (1 + (-1)^e) / 2 if p == 13, 17, 19, 23 (mod 24). - Michael Somos, Jun 17 2005
Moebius transform is period 24 sequence [ 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 0, 0, -1, 0, ...]. - Michael Somos, Jan 26 2006
Euler transform of period 24 sequence [ 1, 0, 0, 0, 1, -1, 1, -1, 0, 0, 1, -2, 1, 0, 0, -1, 1, -1, 1, 0, 0, 0, 1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 24^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Jun 22 2011
G.f.: Product_{k>0} (1 + x^k) * (1 - x^(3*k)) * (1 - x^(8*k)) / (1 + x^(12*k)).
G.f.: 1 + Sum_{k>0} x^k * (1 + x^(4*k)) * (1 + x^(6*k)) / (1 + x^(12*k)). - Michael Somos, Sep 10 2005
G.f.: 1 + Sum{n = -infinity...infinity} (q^n + q^(5*n)) / (1 + q^(12*n)) (see Berkovich/Yesilyurt). - Ralf Stephan, May 14 2007
a(n) = (-1)^n * A190611(n). a(24*n + 13) = a(24*n + 17) = a(24*n + 19) = a(24*n + 23) = 0. a(2*n) = a(3*n) = a(n). a(2*n + 1) = A129402(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(6) = 1.2825... . - Amiram Eldar, Oct 23 2022
|
|
EXAMPLE
|
G.f. = 1 + q + q^2 + q^3 + q^4 + 2*q^5 + q^6 + 2*q^7 + q^8 + q^9 + 2*q^10 + ...
|
|
MATHEMATICA
|
a[ n_] := If[ n < 1, Boole[n == 0], DivisorSum[ n, KroneckerSymbol[ -6, #] &]] (* Michael Somos, Jul 11 2011 *)
a[ n_] := SeriesCoefficient[(EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^6] + EllipticTheta[ 3, 0, q^2] EllipticTheta[ 3, 0, q^3]) / 2, {q, 0, n}]; (* Michael Somos, May 17 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ q^3] QPochhammer[ q^8] QPochhammer[ -q, q] / QPochhammer[ -q^12, q^12] , {q, 0, n}]; (* Michael Somos, May 17 2015 *)
|
|
PROG
|
(PARI) {a(n) = if( n<1, n==0, sumdiv( n, d, kronecker( -6, d)))};
(PARI) {a(n) = if( n<1, n==0, direuler( p=2, n, 1 / ((1 - X) * (1 - kronecker( -6, p) * X)))[n])};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^8 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^24 + A)), n))};
(Magma) A := Basis( ModularForms( Gamma1(24), 1), 102); A[1] + A[2] + A[3] + A[4] + A[5] + 2*A[6] + A[7] + 2*A[8] + A[9] + A[10] + 2*A[11] + 2*A[12]; /* Michael Somos, May 17 2015 */
|
|
CROSSREFS
|
Cf. A129402, A190611.
Sequence in context: A115660 A128581 A190611 * A192013 A329618 A026517
Adjacent sequences: A000374 A000375 A000376 * A000378 A000379 A000380
|
|
KEYWORD
|
nonn,easy,nice,mult
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
Edited by Michael Somos, Sep 10 2002
|
|
STATUS
|
approved
|
|
|
|