login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190611
Expansion of f(q^3) * f(-q^8) * chi(-q^12) / chi(q) in powers of q where f(), chi() are Ramanujan theta functions.
7
1, -1, 1, -1, 1, -2, 1, -2, 1, -1, 2, -2, 1, 0, 2, -2, 1, 0, 1, 0, 2, -2, 2, 0, 1, -3, 0, -1, 2, -2, 2, -2, 1, -2, 0, -4, 1, 0, 0, 0, 2, 0, 2, 0, 2, -2, 0, 0, 1, -3, 3, 0, 0, -2, 1, -4, 2, 0, 2, -2, 2, 0, 2, -2, 1, 0, 2, 0, 0, 0, 4, 0, 1, -2, 0, -3, 0, -4, 0
OFFSET
0,6
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q) * eta(q^4) * eta(q^6)^3 * eta(q^8) / (eta(q^2)^2 * eta(q^3) * eta(q^24)) in powers of q.
Euler transform of period 24 sequence [ -1, 1, 0, 0, -1, -1, -1, -1, 0, 1, -1, -2, -1, 1, 0, -1, -1, -1, -1, 0, 0, 1, -1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 96^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A129402.
a(n) = (-1)^n * A000377(n). a(24*n + 13) = a(24*n + 17) = a(24*n + 19) = a(24*n + 23) = 0.
a(2*n) = A000377(n). a(2*n + 1) = - A129402(n). a(3*n) = a(n). - Michael Somos, Nov 11 2015
EXAMPLE
G.f. = 1 - q + q^2 - q^3 + q^4 - 2*q^5 + q^6 - 2*q^7 + q^8 - q^9 + 2*q^10 + ...
MATHEMATICA
a[ n_] := If[ n < 1, Boole[n == 0], (-1)^n DivisorSum[ n, KroneckerSymbol[ -6, #] &]]; (* Michael Somos, Nov 11 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ q, -q] QPochhammer[ -q^3] QPochhammer[ q^8] QPochhammer[ q^12, -q^12], {q, 0, n}]; (* Michael Somos, Nov 11 2015 *)
PROG
(PARI) {a(n) = if( n<1, n==0, (-1)^n * sumdiv( n, d, kronecker( -6, d)))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^3 * eta(x^8 + A) / (eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^24 + A)), n))};
CROSSREFS
Sequence in context: A261122 A115660 A128581 * A000377 A192013 A373989
KEYWORD
sign
AUTHOR
Michael Somos, May 14 2011
STATUS
approved