login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of f(q^3) * f(-q^8) * chi(-q^12) / chi(q) in powers of q where f(), chi() are Ramanujan theta functions.
7

%I #13 Mar 12 2021 22:24:46

%S 1,-1,1,-1,1,-2,1,-2,1,-1,2,-2,1,0,2,-2,1,0,1,0,2,-2,2,0,1,-3,0,-1,2,

%T -2,2,-2,1,-2,0,-4,1,0,0,0,2,0,2,0,2,-2,0,0,1,-3,3,0,0,-2,1,-4,2,0,2,

%U -2,2,0,2,-2,1,0,2,0,0,0,4,0,1,-2,0,-3,0,-4,0

%N Expansion of f(q^3) * f(-q^8) * chi(-q^12) / chi(q) in powers of q where f(), chi() are Ramanujan theta functions.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A190611/b190611.txt">Table of n, a(n) for n = 0..5000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of eta(q) * eta(q^4) * eta(q^6)^3 * eta(q^8) / (eta(q^2)^2 * eta(q^3) * eta(q^24)) in powers of q.

%F Euler transform of period 24 sequence [ -1, 1, 0, 0, -1, -1, -1, -1, 0, 1, -1, -2, -1, 1, 0, -1, -1, -1, -1, 0, 0, 1, -1, -2, ...].

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 96^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A129402.

%F a(n) = (-1)^n * A000377(n). a(24*n + 13) = a(24*n + 17) = a(24*n + 19) = a(24*n + 23) = 0.

%F a(2*n) = A000377(n). a(2*n + 1) = - A129402(n). a(3*n) = a(n). - _Michael Somos_, Nov 11 2015

%e G.f. = 1 - q + q^2 - q^3 + q^4 - 2*q^5 + q^6 - 2*q^7 + q^8 - q^9 + 2*q^10 + ...

%t a[ n_] := If[ n < 1, Boole[n == 0], (-1)^n DivisorSum[ n, KroneckerSymbol[ -6, #] &]]; (* _Michael Somos_, Nov 11 2015 *)

%t a[ n_] := SeriesCoefficient[ QPochhammer[ q, -q] QPochhammer[ -q^3] QPochhammer[ q^8] QPochhammer[ q^12, -q^12], {q, 0, n}]; (* _Michael Somos_, Nov 11 2015 *)

%o (PARI) {a(n) = if( n<1, n==0, (-1)^n * sumdiv( n, d, kronecker( -6, d)))};

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^3 * eta(x^8 + A) / (eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^24 + A)), n))};

%Y Cf. A000377, A129402.

%K sign

%O 0,6

%A _Michael Somos_, May 14 2011