login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A261120 The number of distinct triple points in the set of function values FLSN(m/6/7^n), m in 0, 1, 2... 6*7^n, where FLSN:[0,1] is the "flowsnake" plane filling curve. 4
2, 17, 134, 989, 7082, 50057, 351854, 2467349, 17284562, 121031297, 847337174, 5931714509, 41523064442, 290664639737, 2034662044094, 14242663006469, 99698727138722, 697891348251377, 4885240212600614, 34196683812727229, 239376793662659402, 1675637576559322217 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

One derives recurrence equations for the numbers of tiles, internal edges, internal vertices, and triple point vertices--respectively t(n), e(n), v(n), a(n)--by creating a set of planar substitution rules and proving that two triple points occur on the interior of every supertile, and that other triple points only occur at the intersection of three supertiles.

Restricting the domain to [0,1] introduces flowsnake deceptions along the boundary: the set of function values FLSN(m/6/7^n), m in 0, 1, 2... 6*7^n contains some points that would be exactly triple points if [0,1] were extended to [-infinity,infinity]. Extending the system of linear recurrence equations constrains the deception-free count to equal a(n) + 3^n . - Bradley Klee, Aug 30 2015

This sequence counts all triple points of the Q-function, up to the boundary deceptions ( cf. Klee, "A Pit of Flowsnakes" ). - Bradley Klee, Aug 30 2015

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

M. Beeler, R. W. Gosper, and R. Schroeppel, HAKMEM, (1972), Item 115.

B. Klee, A Pit of Flowsnakes, Complex Systems, 24, 4 (2015).

B. Klee, Flowsnake Q-Function, Wolfram Demonstrations(2015).

Index entries for linear recurrences with constant coefficients, signature (11,-31,21).

FORMULA

t(0)=1, e(n)=v(n)=a(n)=0,

t(n)= 7 t(n-1),

e(n)= 12 t(n-1)+ 3 e(n-1),

v(n)= 6 t(n-1) + 2 e(n-1) + v(n-1),

a(n)= 2 t(n-1) + 1/2 v(n-1).

G.f.: 1/14 (7/(1 - x) - 7/(1 - 3 x) + 6/(1 - 7 x)).

From Colin Barker, Aug 17 2015: (Start)

a(n) = (7-7*3^n+6*7^n)/14.

a(n) = 11*a(n-1)-31*a(n-2)+21*a(n-3) for n>3.

G.f.: -x*(9*x^2-5*x+2) / ((x-1)*(3*x-1)*(7*x-1)).

(End)

EXAMPLE

Define one particular snowflake, or slowfake, or flowsnake on [0,1] with values:

FLSN(m/6) = {{0, 0}, {1/2, -Sqrt[3]/6}, {4/7, 2 Sqrt[3]/7}, {1/6, Sqrt[3]/6}, {1/2, Sqrt[3]/2}, {1, Sqrt[3]/3}, {1, 0}}.

There exists a(1) = 2 triple points when the denominator is 42 = 6*7:

FLSN(5/42) = FLSN(11/42) = FLSN(17/42) = {3/7, Sqrt[3]/21},

FLSN(13/42) = FLSN(31/42) = FLSN(37/42) = {5/7, 4 Sqrt[3]/21}.

MAPLE

A261120:=n->(7-7*3^n+6*7^n)/14: seq(A261120(n), n=1..30); # Wesley Ivan Hurt, Aug 27 2015

MATHEMATICA

1/14 (7 - 7*3^# + 6*7^#) & /@ Range[1, 20]

LinearRecurrence[{11, -31, 21}, {2, 17, 134}, 20]

PROG

(Magma) [1/14*(7-7*3^n+6*7^n): n in [1..25]]; // Vincenzo Librandi, Aug 10 2015

(PARI) Vec(-x*(9*x^2-5*x+2)/((x-1)*(3*x-1)*(7*x-1)) + O(x^30)) \\ Colin Barker, Aug 17 2015

CROSSREFS

Cf. A260482, A260747, A260748, A260749, A260750, A261180, A261185.

Sequence in context: A291390 A007354 A180840 * A077243 A037525 A037734

Adjacent sequences: A261117 A261118 A261119 * A261121 A261122 A261123

KEYWORD

nonn,easy

AUTHOR

Bradley Klee, Aug 08 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 07:01 EST 2022. Contains 358544 sequences. (Running on oeis4.)