

A261120


The number of distinct triple points in the set of function values FLSN(m/6/7^n), m in 0, 1, 2... 6*7^n, where FLSN:[0,1] is the "flowsnake" plane filling curve.


4



2, 17, 134, 989, 7082, 50057, 351854, 2467349, 17284562, 121031297, 847337174, 5931714509, 41523064442, 290664639737, 2034662044094, 14242663006469, 99698727138722, 697891348251377, 4885240212600614, 34196683812727229, 239376793662659402, 1675637576559322217
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

One derives recurrence equations for the numbers of tiles, internal edges, internal vertices, and triple point verticesrespectively t(n), e(n), v(n), a(n)by creating a set of planar substitution rules and proving that two triple points occur on the interior of every supertile, and that other triple points only occur at the intersection of three supertiles.
Restricting the domain to [0,1] introduces flowsnake deceptions along the boundary: the set of function values FLSN(m/6/7^n), m in 0, 1, 2... 6*7^n contains some points that would be exactly triple points if [0,1] were extended to [infinity,infinity]. Extending the system of linear recurrence equations constrains the deceptionfree count to equal a(n) + 3^n .  Bradley Klee, Aug 30 2015
This sequence counts all triple points of the Qfunction, up to the boundary deceptions ( cf. Klee, "A Pit of Flowsnakes" ).  Bradley Klee, Aug 30 2015


LINKS

Colin Barker, Table of n, a(n) for n = 1..1000
M. Beeler, R. W. Gosper, and R. Schroeppel, HAKMEM, (1972), Item 115.
B. Klee, A Pit of Flowsnakes, Complex Systems, 24, 4 (2015).
B. Klee, Flowsnake QFunction, Wolfram Demonstrations(2015).
Index entries for linear recurrences with constant coefficients, signature (11,31,21).


FORMULA

t(0)=1, e(n)=v(n)=a(n)=0,
t(n)= 7 t(n1),
e(n)= 12 t(n1)+ 3 e(n1),
v(n)= 6 t(n1) + 2 e(n1) + v(n1),
a(n)= 2 t(n1) + 1/2 v(n1).
G.f.: 1/14 (7/(1  x)  7/(1  3 x) + 6/(1  7 x)).
From Colin Barker, Aug 17 2015: (Start)
a(n) = (77*3^n+6*7^n)/14.
a(n) = 11*a(n1)31*a(n2)+21*a(n3) for n>3.
G.f.: x*(9*x^25*x+2) / ((x1)*(3*x1)*(7*x1)).
(End)


EXAMPLE

Define one particular snowflake, or slowfake, or flowsnake on [0,1] with values:
FLSN(m/6) = {{0, 0}, {1/2, Sqrt[3]/6}, {4/7, 2 Sqrt[3]/7}, {1/6, Sqrt[3]/6}, {1/2, Sqrt[3]/2}, {1, Sqrt[3]/3}, {1, 0}}.
There exists a(1) = 2 triple points when the denominator is 42 = 6*7:
FLSN(5/42) = FLSN(11/42) = FLSN(17/42) = {3/7, Sqrt[3]/21},
FLSN(13/42) = FLSN(31/42) = FLSN(37/42) = {5/7, 4 Sqrt[3]/21}.


MAPLE

A261120:=n>(77*3^n+6*7^n)/14: seq(A261120(n), n=1..30); # Wesley Ivan Hurt, Aug 27 2015


MATHEMATICA

1/14 (7  7*3^# + 6*7^#) & /@ Range[1, 20]
LinearRecurrence[{11, 31, 21}, {2, 17, 134}, 20]


PROG

(Magma) [1/14*(77*3^n+6*7^n): n in [1..25]]; // Vincenzo Librandi, Aug 10 2015
(PARI) Vec(x*(9*x^25*x+2)/((x1)*(3*x1)*(7*x1)) + O(x^30)) \\ Colin Barker, Aug 17 2015


CROSSREFS

Cf. A260482, A260747, A260748, A260749, A260750, A261180, A261185.
Sequence in context: A291390 A007354 A180840 * A077243 A037525 A037734
Adjacent sequences: A261117 A261118 A261119 * A261121 A261122 A261123


KEYWORD

nonn,easy


AUTHOR

Bradley Klee, Aug 08 2015


STATUS

approved



