login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A261120 The number of distinct triple points in the set of function values FLSN(m/6/7^n), m in 0, 1, 2... 6*7^n, where FLSN:[0,1] is the "flowsnake" plane filling curve. 4
2, 17, 134, 989, 7082, 50057, 351854, 2467349, 17284562, 121031297, 847337174, 5931714509, 41523064442, 290664639737, 2034662044094, 14242663006469, 99698727138722, 697891348251377, 4885240212600614, 34196683812727229, 239376793662659402, 1675637576559322217 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

One derives recurrence equations for the numbers of tiles, internal edges, internal vertices, and triple point vertices--respectively t(n), e(n), v(n), a(n)--by creating a set of planar substitution rules and proving that two triple points occur on the interior of every supertile, and that other triple points only occur at the intersection of three supertiles.

Restricting the domain to [0,1] introduces flowsnake deceptions along the boundary: the set of function values FLSN(m/6/7^n), m in 0, 1, 2... 6*7^n contains some points that would be exactly triple points if [0,1] were extended to [-infinity,infinity]. Extending the system of linear recurrence equations constrains the deception-free count to equal a(n) + 3^n . - Bradley Klee, Aug 30 2015

This sequence counts all triple points of the Q-function, up to the boundary deceptions ( cf. Klee, "A Pit of Flowsnakes" ). - Bradley Klee, Aug 30 2015

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

M. Beeler, R. W. Gosper, and R. Schroeppel, HAKMEM, (1972), Item 115.

B. Klee, A Pit of Flowsnakes, Complex Systems, 24, 4 (2015).

B. Klee, Flowsnake Q-Function, Wolfram Demonstrations(2015).

Index entries for linear recurrences with constant coefficients, signature (11,-31,21).

FORMULA

t(0)=1, e(n)=v(n)=a(n)=0,

t(n)= 7 t(n-1),

e(n)= 12 t(n-1)+ 3 e(n-1),

v(n)= 6 t(n-1) + 2 e(n-1) + v(n-1),

a(n)= 2 t(n-1) + 1/2 v(n-1).

G.f.: 1/14 (7/(1 - x) - 7/(1 - 3 x) + 6/(1 - 7 x)).

From Colin Barker, Aug 17 2015: (Start)

a(n) = (7-7*3^n+6*7^n)/14.

a(n) = 11*a(n-1)-31*a(n-2)+21*a(n-3) for n>3.

G.f.: -x*(9*x^2-5*x+2) / ((x-1)*(3*x-1)*(7*x-1)).

(End)

EXAMPLE

Define one particular snowflake, or slowfake, or flowsnake on [0,1] with values:

FLSN(m/6) = {{0, 0}, {1/2, -Sqrt[3]/6}, {4/7, 2 Sqrt[3]/7}, {1/6, Sqrt[3]/6}, {1/2, Sqrt[3]/2}, {1, Sqrt[3]/3}, {1, 0}}.

There exists a(1) = 2 triple points when the denominator is 42 = 6*7:

FLSN(5/42) = FLSN(11/42) = FLSN(17/42) = {3/7, Sqrt[3]/21},

FLSN(13/42) = FLSN(31/42) = FLSN(37/42) = {5/7, 4 Sqrt[3]/21}.

MAPLE

A261120:=n->(7-7*3^n+6*7^n)/14: seq(A261120(n), n=1..30); # Wesley Ivan Hurt, Aug 27 2015

MATHEMATICA

1/14 (7 - 7*3^# + 6*7^#) & /@ Range[1, 20]

LinearRecurrence[{11, -31, 21}, {2, 17, 134}, 20]

PROG

(MAGMA) [1/14*(7-7*3^n+6*7^n): n in [1..25]]; // Vincenzo Librandi, Aug 10 2015

(PARI) Vec(-x*(9*x^2-5*x+2)/((x-1)*(3*x-1)*(7*x-1)) + O(x^30)) \\ Colin Barker, Aug 17 2015

CROSSREFS

Cf. A260482, A260747, A260748, A260749, A260750, A261180, A261185.

Sequence in context: A291390 A007354 A180840 * A077243 A037525 A037734

Adjacent sequences:  A261117 A261118 A261119 * A261121 A261122 A261123

KEYWORD

nonn,easy

AUTHOR

Bradley Klee, Aug 08 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 01:16 EST 2021. Contains 349344 sequences. (Running on oeis4.)