The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A261120 The number of distinct triple points in the set of function values FLSN(m/6/7^n), m in 0, 1, 2... 6*7^n, where FLSN:[0,1] is the "flowsnake" plane filling curve. 4
 2, 17, 134, 989, 7082, 50057, 351854, 2467349, 17284562, 121031297, 847337174, 5931714509, 41523064442, 290664639737, 2034662044094, 14242663006469, 99698727138722, 697891348251377, 4885240212600614, 34196683812727229, 239376793662659402, 1675637576559322217 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS One derives recurrence equations for the numbers of tiles, internal edges, internal vertices, and triple point vertices--respectively t(n), e(n), v(n), a(n)--by creating a set of planar substitution rules and proving that two triple points occur on the interior of every supertile, and that other triple points only occur at the intersection of three supertiles. Restricting the domain to [0,1] introduces flowsnake deceptions along the boundary: the set of function values FLSN(m/6/7^n), m in 0, 1, 2... 6*7^n contains some points that would be exactly triple points if [0,1] were extended to [-infinity,infinity]. Extending the system of linear recurrence equations constrains the deception-free count to equal a(n) + 3^n . - Bradley Klee, Aug 30 2015 This sequence counts all triple points of the Q-function, up to the boundary deceptions ( cf. Klee, "A Pit of Flowsnakes" ). - Bradley Klee, Aug 30 2015 LINKS Colin Barker, Table of n, a(n) for n = 1..1000 M. Beeler, R. W. Gosper, and R. Schroeppel, HAKMEM, (1972), Item 115. B. Klee, A Pit of Flowsnakes, Complex Systems, 24, 4 (2015). B. Klee, Flowsnake Q-Function, Wolfram Demonstrations(2015). Index entries for linear recurrences with constant coefficients, signature (11,-31,21). FORMULA t(0)=1, e(n)=v(n)=a(n)=0, t(n)= 7 t(n-1), e(n)= 12 t(n-1)+ 3 e(n-1), v(n)= 6 t(n-1) + 2 e(n-1) + v(n-1), a(n)= 2 t(n-1) + 1/2 v(n-1). G.f.: 1/14 (7/(1 - x) - 7/(1 - 3 x) + 6/(1 - 7 x)). From Colin Barker, Aug 17 2015: (Start) a(n) = (7-7*3^n+6*7^n)/14. a(n) = 11*a(n-1)-31*a(n-2)+21*a(n-3) for n>3. G.f.: -x*(9*x^2-5*x+2) / ((x-1)*(3*x-1)*(7*x-1)). (End) EXAMPLE Define one particular snowflake, or slowfake, or flowsnake on [0,1] with values: FLSN(m/6) = {{0, 0}, {1/2, -Sqrt/6}, {4/7, 2 Sqrt/7}, {1/6, Sqrt/6}, {1/2, Sqrt/2}, {1, Sqrt/3}, {1, 0}}. There exists a(1) = 2 triple points when the denominator is 42 = 6*7: FLSN(5/42) = FLSN(11/42) = FLSN(17/42) = {3/7, Sqrt/21}, FLSN(13/42) = FLSN(31/42) = FLSN(37/42) = {5/7, 4 Sqrt/21}. MAPLE A261120:=n->(7-7*3^n+6*7^n)/14: seq(A261120(n), n=1..30); # Wesley Ivan Hurt, Aug 27 2015 MATHEMATICA 1/14 (7 - 7*3^# + 6*7^#) & /@ Range[1, 20] LinearRecurrence[{11, -31, 21}, {2, 17, 134}, 20] PROG (MAGMA) [1/14*(7-7*3^n+6*7^n): n in [1..25]]; // Vincenzo Librandi, Aug 10 2015 (PARI) Vec(-x*(9*x^2-5*x+2)/((x-1)*(3*x-1)*(7*x-1)) + O(x^30)) \\ Colin Barker, Aug 17 2015 CROSSREFS Cf. A260482, A260747, A260748, A260749, A260750, A261180, A261185. Sequence in context: A291390 A007354 A180840 * A077243 A037525 A037734 Adjacent sequences:  A261117 A261118 A261119 * A261121 A261122 A261123 KEYWORD nonn,easy AUTHOR Bradley Klee, Aug 08 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 01:16 EST 2021. Contains 349344 sequences. (Running on oeis4.)