login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119363
a(n) = Sum_{k=0..n} C(n,3k)^2.
7
1, 1, 1, 2, 17, 101, 402, 1275, 3921, 14114, 58601, 243695, 950578, 3537847, 13166791, 50514102, 198627921, 782913717, 3054480306, 11824753551, 45823049817, 178682390994, 700285942731, 2747647985241, 10767833451954, 42164261091351, 165225573240651
OFFSET
0,4
COMMENTS
a(n) - A119364(n) = A119365(n).
LINKS
FORMULA
From Vaclav Kotesovec, Mar 12 2019: (Start)
Recurrence: (n-2)*(n-1)*n*(637*n^6 - 11466*n^5 + 84364*n^4 - 324394*n^3 + 686227*n^2 - 755060*n + 336132)*a(n) = 3*(n-2)*(n-1)*(1274*n^7 - 23569*n^6 + 180194*n^5 - 733383*n^4 + 1699606*n^3 - 2208294*n^2 + 1449504*n - 351000)*a(n-1) - 3*(n-2)*(3185*n^8 - 63700*n^7 + 539028*n^6 - 2512118*n^5 + 7020469*n^4 - 11971242*n^3 + 12050010*n^2 - 6446736*n + 1362744)*a(n-2) + (14014*n^9 - 315315*n^8 + 3072678*n^7 - 16986046*n^6 + 58535088*n^5 - 129861691*n^4 + 184326992*n^3 - 159830656*n^2 + 75517728*n - 14313456)*a(n-3) + 3*(n-3)*(3185*n^8 - 63700*n^7 + 538391*n^6 - 2501394*n^5 + 6946794*n^4 - 11707256*n^3 + 11530544*n^2 - 5915328*n + 1142208)*a(n-4) + 18*(n-4)*(n-3)*(2*n - 9)*(637*n^6 - 7644*n^5 + 36589*n^4 - 88858*n^3 + 114124*n^2 - 71840*n + 16440)*a(n-5).
a(n) ~ 4^n / (3*sqrt(Pi*n)). (End)
MATHEMATICA
Table[Sum[Binomial[n, 3k]^2, {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Mar 12 2019 *)
Table[HypergeometricPFQ[{1/3 - n/3, 1/3 - n/3, 2/3 - n/3, 2/3 - n/3, -n/3, -n/3}, {1/3, 1/3, 2/3, 2/3, 1}, 1], {n, 0, 30}] (* Vaclav Kotesovec, Mar 12 2019 *)
CROSSREFS
Central coefficients of number triangle A119335.
a(n) = A119335(2n, n).
Sequence in context: A127533 A023260 A174365 * A272065 A129977 A213787
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 16 2006
EXTENSIONS
Edited by N. J. A. Sloane, Jun 12 2008
STATUS
approved