OFFSET
0,4
COMMENTS
In the preorder traversal of a binary tree, any transition from a node at a deeper level to a node on a strictly higher level is called a jump; the positive difference of the levels is called the jump distance; the sum of the jump distances in a given binary tree is called the jump-length.
The Krandick reference is about jumps and jump-length in full binary trees.
LINKS
W. Krandick, Trees and jumps and real roots, J. Computational and Applied Math., 162, 2004, 51-55.
FORMULA
G.f.: z^3*C^6*(C+1)/sqrt(1-4z), where C=[1-sqrt(1-4z)]/(2z) is the Catalan function.
a(n) = binomial(2*n+1,n-3) + binomial(2*n,n-3).
a(n) = Sum_{k>=0} A127532(n,k).
a(n) ~ n -> 4^n*(3-275/(8*n)+29475/(128*n^2)-1268225/(1024*n^3)+195652737/ (32768*n^4))/sqrt(n*Pi). - Peter Luschny, Dec 19 2015
D-finite with recurrence -(n-3)*(3*n+2)*(n+4)*a(n) +2*n*(3*n+5)*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jul 26 2022
MAPLE
seq(binomial(2*n+1, n-3)+binomial(2*n, n-3), n=0..28);
MATHEMATICA
Table[Binomial[2 n + 1, n - 3] + Binomial[2 n, n - 3], {n, 0, 24}] (* Michael De Vlieger, Dec 19 2015 *)
PROG
(Magma) [Binomial(2*n+1, n-3) + Binomial(2*n, n-3): n in [0..30]]; // Vincenzo Librandi, Dec 20 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jan 18 2007
STATUS
approved