login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127531
Number of jumps in all binary trees with n edges.
2
0, 0, 2, 13, 64, 285, 1210, 5005, 20384, 82212, 329460, 1314610, 5230016, 20764055, 82317690, 326012925, 1290244800, 5103910680, 20183646780, 79802261190, 315492902400, 1247247742650, 4930910180196, 19495286167698, 77085553829824
OFFSET
1,3
COMMENTS
In the preorder traversal of a binary tree, any transition from a node at a deeper level to a node on a strictly higher level is called a jump.
LINKS
David Anderson, E. S. Egge, M. Riehl, L. Ryan, R. Steinke, Y. Vaughan, Pattern Avoiding Linear Extensions of Rectangular Posets, arXiv:1605.06825 [math.CO], 2016.
Colin Defant, Proofs of Conjectures about Pattern-Avoiding Linear Extensions, arXiv:1905.02309 [math.CO], 2019.
W. Krandick, Trees and jumps and real roots, J. Computational and Applied Math., 162, 2004, 51-55.
Lin Yang and Shengliang Yang, Protected Branches in Ordered Trees, J. Math. Study (2023) Vol. 56, No. 1, 1-17.
FORMULA
a(n) = Sum_{k>=0} k*A127530(n,k).
a(n) = binomial(2*n, n-2) - binomial(2*n - 2, n-2).
From Peter Luschny, Dec 19 2015: (Start)
a(n) = 4^(n-1)*(n-1)*(3*n^2-5*n-2)*Gamma(n-1/2)/(sqrt(Pi)*Gamma(n+3)).
a(n) ~ 4^n*(3-139/(8*n)+8595/(128*n^2)-234745/(1024*n^3)+24282657/(32768*n^4)) /sqrt(n*Pi). (End)
D-finite with recurrence -5*(n+2)*(n-3)*a(n) +(19*n^2-26*n-5)*a(n-1) +2*(n-2)*(2*n-5)*a(n-2)=0. - R. J. Mathar, Jul 26 2022
D-finite with recurrence +(n-3)*(3*n-2)*(n+2)*a(n) -2*(n-1)*(3*n+1)*(2*n-3)*a(n-1)=0. - R. J. Mathar, Jul 26 2022
MAPLE
seq(binomial(2*n, n-2)-binomial(2*n-2, n-2), n=1..28);
MATHEMATICA
Table[Binomial[2n, n-2] - Binomial[2n-2, n-2], {n, 30}] (* or *) Table[4^(n-1)(n-1)(3n^2 -5n-2)Gamma[n-1/2]/(Sqrt[Pi]Gamma[n+3]), {n, 30}] (* Michael De Vlieger, Dec 19 2015 *)
PROG
(Magma) [Binomial(2*n, n-2) - Binomial(2*n - 2, n-2): n in [1..30]]; // Vincenzo Librandi, Dec 20 2015
(PARI) vector(30, n, binomial(2*n, n-2) -binomial(2*n-2, n-2) ) \\ G. C. Greubel, Mar 19 2017
(Magma) [Binomial(2*n, n-2) -Binomial(2*n-2, n-2): n in [1..30]]; // G. C. Greubel, May 08 2019
(Sage) [binomial(2*n, n-2) -binomial(2*n-2, n-2) for n in (1..30)] # G. C. Greubel, May 08 2019
(GAP) List([1..30], n-> Binomial(2*n, n-2) -Binomial(2*n-2, n-2)) # G. C. Greubel, May 08 2019
CROSSREFS
Cf. A127530.
Sequence in context: A081340 A211067 A296435 * A266633 A037745 A037626
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jan 18 2007
STATUS
approved