login
A119365
Generalized Catalan numbers for triangle A119335.
5
1, 0, 0, 1, 6, 20, 51, 126, 392, 1513, 5877, 21054, 71270, 242463, 863590, 3193737, 11889414, 43783908, 159998493, 586908936, 2175907284, 8138471667, 30541703733, 114620380032, 430344635913, 1619584557885, 6116422089050
OFFSET
0,5
COMMENTS
Counts rooted planar n-trees whose number of leaves is divisible by 3.
FORMULA
a(n) = A119335(2n,n) - A119335(2n,n+1).
a(n) = Sum_{k=0..n} if(mod(n-k,3)=0, (1/n)*C(n,k)*C(n,k+1), 0).
a(n) + A119366(n) + A119367(n) = A000108(n).
MAPLE
A119365 := proc(n)
local k;
if n = 0 then
return 1
end if;
a := 0 ;
for k from 0 to n do
if modp(n-k, 3) = 0 then
a := a+binomial(n, k)*binomial(n, k+1) ;
end if;
end do:
a/n;
end proc:
seq(A119365(n), n=0..40) ; # R. J. Mathar, Oct 30 2014
MATHEMATICA
A119335[n_, k_] := Sum[Binomial[k, 3j] Binomial[n-k, 3j], {j, 0, n-k}];
a[n_] := A119335[2n, n] - A119335[2n, n+1];
Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Sep 14 2023 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 16 2006
STATUS
approved