

A001211


a(n) = solution to the postage stamp problem with 6 denominations and n stamps.
(Formerly M4136 N1836)


21



6, 20, 52, 108, 211, 388, 664, 1045, 1617, 2510, 3607, 5118, 7066, 9748, 12793, 17061, 22342, 28874, 36560, 45745, 57814, 72997, 87555, 106888, 129783
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.


REFERENCES

R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206210.
R. K. Guy, Unsolved Problems in Number Theory, C12.
W. F. Lunnon, A postage stamp problem. Comput. J. 12 (1969) 377380.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=1..25.
M. F. Challis, Two new techniques for computing extremal hbases A_k, Comp. J. 36(2) (1993) 117126
Erich Friedman, Postage stamp problem
Eric Weisstein's World of Mathematics, Postage stamp problem
M. F. Challis and J. P. Robinson, Some Extremal Postage Stamp Bases, J. Integer Seq., 13 (2010), Article 10.2.3.


CROSSREFS

Postage stamp sequences: A001208 A001209 A001210 A001211 A001212 A001213 A001214 A001215 A001216 A005342 A005343 A005344 A014616 A053346 A053348 A075060 A084192 A084193
A row or column of the array A196416 (possibly with 1 subtracted from it).
Sequence in context: A266760 A213586 A119365 * A122225 A275112 A027178
Adjacent sequences: A001208 A001209 A001210 * A001212 A001213 A001214


KEYWORD

nonn


AUTHOR

N. J. A. Sloane.


EXTENSIONS

Added terms up to a(15) from Challis.  R. J. Mathar, Apr 01 2006
Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
Added terms a(16) through a(25) from Challis and Robinson. John P Robinson (johnrobinson(AT)uiowa.edu), Feb 18 2010


STATUS

approved



