This site is supported by donations to The OEIS Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001211 a(n) = solution to the postage stamp problem with 6 denominations and n stamps.
(Formerly M4136 N1836)
6, 20, 52, 108, 211, 388, 664, 1045, 1617, 2510, 3607, 5118, 7066, 9748, 12793, 17061, 22342, 28874, 36560, 45745, 57814, 72997, 87555, 106888, 129783 (list; graph; refs; listen; history; text; internal format)



Lunnon defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.


R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206-210.

R. K. Guy, Unsolved Problems in Number Theory, C12.

W. F. Lunnon, A postage stamp problem. Comput. J. 12 (1969) 377-380.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


Table of n, a(n) for n=1..25.

M. F. Challis, Two new techniques for computing extremal h-bases A_k, Comp. J. 36(2) (1993) 117-126

Erich Friedman, Postage stamp problem

Eric Weisstein's World of Mathematics, Postage stamp problem

M. F. Challis and J. P. Robinson, Some Extremal Postage Stamp Bases, J. Integer Seq., 13 (2010), Article 10.2.3. [From John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010]


Postage stamp sequences: A001208 A001209 A001210 A001211 A001212 A001213 A001214 A001215 A001216 A005342 A005343 A005344 A014616 A053346 A053348 A075060 A084192 A084193

A row or column of the array A196416 (possibly with 1 subtracted from it).

Sequence in context: A067117 A213586 A119365 * A122225 A027178 A055909

Adjacent sequences:  A001208 A001209 A001210 * A001212 A001213 A001214




N. J. A. Sloane.


Added terms up to a(15) from Challis. - R. J. Mathar, Apr 01 2006

Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004

Added terms a(16) through a(25) from Challis and Robinson. John P Robinson (john-robinson(AT)uiowa.edu), Feb 18 2010



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified March 29 22:26 EDT 2015. Contains 256025 sequences.