

A005343


a(n) = solution to the postage stamp problem with n denominations and 8 stamps.
(Formerly M4505)


19




OFFSET

1,1


COMMENTS

Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.


REFERENCES

R. K. Guy, Unsolved Problems in Number Theory, C12.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=1..8.
R. Alter and J. A. Barnett, A postage stamp problem, Amer. Math. Monthly, 87 (1980), 206210.
M. F. Challis and J. P. Robinson, Some Extremal Postage Stamp Bases, J. Integer Seq., 13 (2010), Article 10.2.3. [From John P Robinson (johnrobinson(AT)uiowa.edu), Feb 18 2010]
Erich Friedman, Postage stamp problem
R. L. Graham and N. J. A. Sloane, On Additive Bases and Harmonious Graphs
R. L. Graham and N. J. A. Sloane, On Additive Bases and Harmonious Graphs, SIAM J. Algebraic and Discrete Methods, 1 (1980), 382404.
W. F. Lunnon, A postage stamp problem, Comput. J. 12 (1969) 377380.


CROSSREFS

Postage stamp sequences: A001208, A001209, A001210, A001211, A001212, A001213, A001214, A001215, A001216, A005342, A005343, A005344, A014616, A053346, A053348, A075060, A084192, A084193.
Sequence in context: A317032 A229713 A212516 * A200941 A332600 A331454
Adjacent sequences: A005340 A005341 A005342 * A005344 A005345 A005346


KEYWORD

nonn,more


AUTHOR

N. J. A. Sloane.


EXTENSIONS

Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
a(8) from Challis and Robinson. John P Robinson (johnrobinson(AT)uiowa.edu), Feb 18 2010


STATUS

approved



