

A331454


Triangle read by rows: T(n,m) (n >= m >= 1) = number of line segments formed by drawing the lines connecting any two of the 2*(m+n) perimeter points of an m X n grid of squares.


13



8, 28, 92, 80, 240, 596, 178, 508, 1028, 1936, 372, 944, 2004, 3404, 6020, 654, 1548, 3018, 4962, 8064, 11088, 1124, 2520, 4808, 7734, 12708, 17022, 26260, 1782, 3754, 6704, 10840, 16608, 22220, 32794, 42144, 2724, 5392, 9780, 14620, 22788, 30238, 44028, 54024, 72296, 3914, 7528, 12720, 19428, 29914, 37848, 54612, 67590, 86906, 107832
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Take a grid of m+1 X n+1 points. There are 2*(m+n) points on the perimeter. Join every pair of the perimeter points by a line (of finite length). The lines do not extend outside the grid. T(m,n) is the number of line segments formed when these lines intersect each other, and A331452(m,n) and A331453(m,n) give the number of regions and the number of vertices respectively.
For illustrations see the links in A331452.


LINKS

N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.


EXAMPLE

Triangle begins:
8,
28, 92,
80, 240, 596,
178, 508, 1028, 1936,
372, 944, 2004, 3404, 6020,
654, 1548, 3018, 4962, 8064, 11088,
1124, 2520, 4808, 7734, 12708, 17022, 26260,
1782, 3754, 6704, 10840, 16608, 22220, 32794, 42144,
2724, 5392, 9780, 14620, 22788, 30238, 44028, 54024, 72296,
...


CROSSREFS



KEYWORD



AUTHOR



STATUS

approved



