login
A333278
Triangle read by rows: T(n,m) (n >= m >= 1) = number of edges in the graph formed by drawing the line segments connecting any two of the (n+1) X (m+1) lattice points in an n X m grid of squares.
3
8, 28, 92, 80, 296, 872, 178, 652, 1922, 4344, 372, 1408, 4256, 9738, 21284, 654, 2470, 7466, 16978, 36922, 64172, 1124, 4312, 13112, 29874, 64800, 113494, 200028, 1782, 6774, 20812, 47402, 103116, 181484, 319516, 509584, 2724, 10428, 31776, 72398, 158352, 279070, 490396, 782096, 1199428
OFFSET
1,1
COMMENTS
T(n,m) = A288180(n,m)+A288187(n,m)-1 (Euler).
For the graphs defined in A331452 and A288187 only the counts for graphs that are one square wide have formulas for regions, edges, and vertices (see A306302, A331757, A331755). For width 2 there are six such sequences (A331766, A331765, A331763; A333279, A333280, A333281). It would be nice to have a formula for any one of them.
EXAMPLE
Triangle begins:
8,
28, 92,
80, 296, 872,
178, 652, 1922, 4344,
372, 1408, 4256, 9738, 21284,
654, 2470, 7466, 16978, 36922, 64172,
...
CROSSREFS
Cf. A288180.
For column 1 see A331757. For column 2 see A333279, A333280, A333281.
Sequence in context: A200941 A332600 A331454 * A333283 A211066 A095857
KEYWORD
nonn,tabl,more
AUTHOR
STATUS
approved