|
|
A331757
|
|
Number of edges in a figure made up of a row of n adjacent congruent rectangles upon drawing diagonals of all possible rectangles.
|
|
15
|
|
|
8, 28, 80, 178, 372, 654, 1124, 1782, 2724, 3914, 5580, 7626, 10352, 13590, 17540, 22210, 28040, 34670, 42760, 51962, 62612, 74494, 88508, 104042, 121912, 141534, 163664, 187942, 215636, 245490, 279260, 316022, 356456, 399898, 447612, 498698, 555352
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
For n > 1, a(n) = 2*(n*(n+3) + Sum_{i=2..floor(n/2)} (n+1-i)*(n+1+i)*phi(i) + Sum_{i=floor(n/2)+1..n} (n+1-i)*(2*n+2-i)*phi(i)). - Chai Wah Wu, Aug 16 2021
|
|
MATHEMATICA
|
Table[n^2 + 4n + 1 + Sum[Sum[(2 * Boole[GCD[i, j] == 1] - Boole[GCD[i, j] == 2]) * (n + 1 - i) * (n + 1 - j), {j, 1, n}], {i, 1, n}], {n, 1, 37}] (* Joshua Oliver, Feb 05 2020 *)
|
|
PROG
|
(Python)
from sympy import totient
def A331757(n): return 8 if n == 1 else 2*(n*(n+3) + sum(totient(i)*(n+1-i)*(n+1+i) for i in range(2, n//2+1)) + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(n//2+1, n+1))) # Chai Wah Wu, Aug 16 2021
|
|
CROSSREFS
|
A306302 gives number of regions in the figure.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|