login
A324043
Number of quadrilateral regions into which a figure made up of a row of n adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles.
11
0, 2, 14, 34, 90, 154, 288, 462, 742, 1038, 1512, 2074, 2904, 3774, 4892, 6154, 7864, 9662, 12022, 14638, 17786, 20998, 25024, 29402, 34672, 40038, 46310, 53038, 61090, 69454, 79344, 89890, 101792, 113854, 127476, 141866, 158428, 175182, 193760, 213274, 235444, 258182, 283858, 310750, 339986
OFFSET
1,2
COMMENTS
A row of n adjacent congruent rectangles can only be divided into triangles (cf. A324042) or quadrilaterals when drawing diagonals. Proof is given in Alekseyev et al. (2015) under the transformation described in A306302.
LINKS
M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh, On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165.
Lars Blomberg, Scott R. Shannon, and N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2021). Also arXiv:2009.07918.
Robert Israel, Maple program.
FORMULA
a(n) = A115005(n+1) - A177719(n+1) - n - 1 = Sum_{i,j=1..n; gcd(i,j)=1} (n+1-i)*(n+1-j) - 2*Sum_{i,j=1..n; gcd(i,j)=2} (n+1-i)*(n+1-j) - n^2. - Max Alekseyev, Jul 08 2019
a(n) = A306302(n) - A324042(n).
For n>1, a(n) = -2(n-1)^2 + Sum_{i=2..floor(n/2)} (n+1-i)*(7i-2n-2)*phi(i) + Sum_{i=floor(n/2)+1..n} (n+1-i)*(2n+2-i)*phi(i). - Chai Wah Wu, Aug 16 2021
EXAMPLE
For k adjacent congruent rectangles, the number of quadrilateral regions in the j-th rectangle is:
k\j| 1 2 3 4 5 6 7 ...
---+--------------------------------
1 | 0, 0, 0, 0, 0, 0, 0, ...
2 | 1, 1, 0, 0, 0, 0, 0, ...
3 | 3, 8, 3, 0, 0, 0, 0, ...
4 | 5, 12, 12, 5, 0, 0, 0, ...
5 | 7, 22, 32, 22, 7, 0, 0, ...
6 | 9, 28, 40, 40, 28, 9, 0, ...
7 | 11, 38, 58, 74, 58, 38, 11, ...
...
a(4) = 5 + 12 + 12 + 5 = 34.
MAPLE
See Robert Israel link.
There are also Maple programs for both A306302 and A324042. Then a := n -> A306302(n) - A324042(n); # N. J. A. Sloane, Mar 04 2020
MATHEMATICA
Table[Sum[Sum[(Boole[GCD[i, j] == 1] - 2 * Boole[GCD[i, j] == 2]) * (n + 1 - i) * (n + 1 - j), {j, 1, n}], {i, 1, n}] - n^2, {n, 1, 45}] (* Joshua Oliver, Feb 05 2020 *)
PROG
(PARI) { A324043(n) = sum(i=1, n, sum(j=1, n, ( (gcd(i, j)==1) - 2*(gcd(i, j)==2) ) * (n+1-i) * (n+1-j) )) - n^2; } \\ Max Alekseyev, Jul 08 2019
(Python)
from sympy import totient
def A324043(n): return 0 if n==1 else -2*(n-1)**2 + sum(totient(i)*(n+1-i)*(7*i-2*n-2) for i in range(2, n//2+1)) + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(n//2+1, n+1)) # Chai Wah Wu, Aug 16 2021
KEYWORD
nonn
AUTHOR
Jinyuan Wang, May 01 2019
EXTENSIONS
a(8)-a(23) from Robert Israel, Jul 07 2019
Terms a(24) onward from Max Alekseyev, Jul 08 2019
STATUS
approved