OFFSET
1,1
COMMENTS
A row of n adjacent congruent rectangles can only be divided into triangles or quadrilaterals when drawing diagonals. A proof is given in Alekseyev et al. (2015) using the mapping to a dissection of a a right isosceles triangle described in A306302.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000
M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165.
Lars Blomberg, Scott R. Shannon, and N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2021). Also arXiv:2009.07918.
Robert Israel, Maple program
Jinyuan Wang, Illustration for n = 1, 2, 3, 4, 5
FORMULA
a(n) = A177719(n+1) + 2*(n+1) = 2 * ( (n+1)*n + Sum_{i,j=1..n; gcd(i,j)=2} (n+1-i)*(n+1-j) ). - Max Alekseyev, Jul 08 2019
a(n) = 2*(2*n^2-n+1+2*Sum_{i=2..floor(n/2)} (n+1-2*i)*(n+1-i)*phi(i)). - Chai Wah Wu, Aug 16 2021
EXAMPLE
For k adjacent congruent rectangles, the number of triangular regions in the j-th rectangle is:
k\j| 1 2 3 4 5 6 7 ...
---+--------------------------------
1 | 4, 0, 0, 0, 0, 0, 0, ...
2 | 7, 7, 0, 0, 0, 0, 0, ...
3 | 9, 14, 9, 0, 0, 0, 0, ...
4 | 11, 24, 24, 11, 0, 0, 0, ...
5 | 13, 30, 38, 30, 13, 0, 0, ...
6 | 15, 38, 60, 60, 38, 15, 0, ...
7 | 17, 44, 76, 86, 76, 44, 17, ...
...
a(4) = 11 + 24 + 24 + 11 = 70.
MAPLE
V := proc(m, n, q) local a, i, j; a:=0;
for i from 1 to m do for j from 1 to n do
if gcd(i, j)=q then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end;
a := n -> 2*( n*(n+1) + V(n, n, 2) );
[seq(a(n), n=1..30)]; # N. J. A. Sloane, Mar 04 2020
See also Robert Israel link.
MATHEMATICA
Table[2 * (n^2 + n + Sum[Sum[Boole[GCD[i, j] == 2] * (n + 1 - i) * (n + 1 - j), {j, 1, n}], {i, 1, n}]), {n, 1, 45}] (* Joshua Oliver, Feb 05 2020 *)
PROG
(PARI) { A324042(n) = 2*((n+1)*n + sum(i=1, n, sum(j=1, n, (gcd(i, j)==2)*(n+1-i)*(n+1-j))) ); } \\ Max Alekseyev, Jul 08 2019
(Python)
from sympy import totient
def A324042(n): return 2*(2*n**2-n+1 + 2*sum(totient(i)*(n+1-2*i)*(n+1-i) for i in range(2, n//2+1))) # Chai Wah Wu, Aug 16 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Jinyuan Wang, May 01 2019
EXTENSIONS
a(8)-a(23) from Robert Israel, Jul 07 2019
Terms a(24) onward from Max Alekseyev, Jul 08 2019
STATUS
approved