login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324042
Number of triangular regions into which a figure made up of a row of n adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles.
10
4, 14, 32, 70, 124, 226, 360, 566, 820, 1218, 1696, 2310, 3020, 4018, 5160, 6590, 8196, 10218, 12464, 15110, 18012, 21650, 25624, 30142, 35028, 40954, 47344, 54558, 62284, 71034, 80360, 90806, 101892, 114770, 128416, 143286, 158972, 176914, 195816, 216350, 237908, 261546, 286304, 313102, 341100
OFFSET
1,1
COMMENTS
A row of n adjacent congruent rectangles can only be divided into triangles or quadrilaterals when drawing diagonals. A proof is given in Alekseyev et al. (2015) using the mapping to a dissection of a a right isosceles triangle described in A306302.
LINKS
M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions. SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165.
Lars Blomberg, Scott R. Shannon, and N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2021). Also arXiv:2009.07918.
Robert Israel, Maple program
FORMULA
a(n) = A177719(n+1) + 2*(n+1) = 2 * ( (n+1)*n + Sum_{i,j=1..n; gcd(i,j)=2} (n+1-i)*(n+1-j) ). - Max Alekseyev, Jul 08 2019
a(n) = A306302(n) - A324043(n).
a(n) = 2*(2*n^2-n+1+2*Sum_{i=2..floor(n/2)} (n+1-2*i)*(n+1-i)*phi(i)). - Chai Wah Wu, Aug 16 2021
EXAMPLE
For k adjacent congruent rectangles, the number of triangular regions in the j-th rectangle is:
k\j| 1 2 3 4 5 6 7 ...
---+--------------------------------
1 | 4, 0, 0, 0, 0, 0, 0, ...
2 | 7, 7, 0, 0, 0, 0, 0, ...
3 | 9, 14, 9, 0, 0, 0, 0, ...
4 | 11, 24, 24, 11, 0, 0, 0, ...
5 | 13, 30, 38, 30, 13, 0, 0, ...
6 | 15, 38, 60, 60, 38, 15, 0, ...
7 | 17, 44, 76, 86, 76, 44, 17, ...
...
a(4) = 11 + 24 + 24 + 11 = 70.
MAPLE
V := proc(m, n, q) local a, i, j; a:=0;
for i from 1 to m do for j from 1 to n do
if gcd(i, j)=q then a:=a+(m+1-i)*(n+1-j); fi; od: od: a; end;
a := n -> 2*( n*(n+1) + V(n, n, 2) );
[seq(a(n), n=1..30)]; # N. J. A. Sloane, Mar 04 2020
See also Robert Israel link.
MATHEMATICA
Table[2 * (n^2 + n + Sum[Sum[Boole[GCD[i, j] == 2] * (n + 1 - i) * (n + 1 - j), {j, 1, n}], {i, 1, n}]), {n, 1, 45}] (* Joshua Oliver, Feb 05 2020 *)
PROG
(PARI) { A324042(n) = 2*((n+1)*n + sum(i=1, n, sum(j=1, n, (gcd(i, j)==2)*(n+1-i)*(n+1-j))) ); } \\ Max Alekseyev, Jul 08 2019
(Python)
from sympy import totient
def A324042(n): return 2*(2*n**2-n+1 + 2*sum(totient(i)*(n+1-2*i)*(n+1-i) for i in range(2, n//2+1))) # Chai Wah Wu, Aug 16 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Jinyuan Wang, May 01 2019
EXTENSIONS
a(8)-a(23) from Robert Israel, Jul 07 2019
Terms a(24) onward from Max Alekseyev, Jul 08 2019
STATUS
approved