OFFSET
1,1
COMMENTS
EXAMPLE
Full table of {n, sopfr(n), sopfr(sopfr(n))}:
{4, 4, 4}, {14, 9, 6}, {33, 14, 9}, {38, 21, 10}, {46, 25, 10}, {62, 33, 14}, {69, 26, 15}, {94, 49, 14}, {129, 46, 25}, {134, 69, 26}, {166, 85, 22}, {177, 62, 33}, {213, 74, 39}, {217, 38, 21}, {254, 129, 46}, {262, 133, 26}, {309, 106, 55}, {334, 169, 26}, {393, 134, 69}, {422, 213, 74}, {445, 94, 49}, {489, 166, 85}, {502, 253, 34}, {526, 265, 58}.
MAPLE
isA001358 := proc(n) if numtheory[bigomega](n) = 2 then true ; else false ; fi ; end: A001414 := proc(n) local ifs; if n = 1 then 0; else ifs := ifactors(n)[2] ; add( op(1, i)*op(2, i), i=ifs) ; fi ; end: A081758 := proc(n) A001414(A001414(n)) ; end: isA124786 := proc(n) if isA001358(n) and isA001358(A001414(n)) and isA001358(A081758(n)) then true ; else false ; fi ; end: for n from 2 to 2000 do if isA124786(n) then printf("%d, ", n) ; fi : od: # R. J. Mathar, Sep 23 2007
MATHEMATICA
semiprimeQ[n_] := PrimeOmega[n] == 2;
sopfr[n_] := Total[Times @@@ FactorInteger[n]];
okQ[n_] := semiprimeQ[n] && semiprimeQ[ sopfr[n]] && semiprimeQ[ sopfr@ sopfr@n];
Select[Range[2000], okQ] (* Jean-François Alcover, Jul 20 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Nov 07 2006
EXTENSIONS
Corrected and extended by R. J. Mathar, Sep 23 2007
STATUS
approved