|
|
A007678
|
|
Number of regions in regular n-gon with all diagonals drawn.
(Formerly M3411)
|
|
143
|
|
|
0, 0, 1, 4, 11, 24, 50, 80, 154, 220, 375, 444, 781, 952, 1456, 1696, 2500, 2466, 4029, 4500, 6175, 6820, 9086, 9024, 12926, 13988, 17875, 19180, 24129, 21480, 31900, 33856, 41416, 43792, 52921, 52956, 66675, 69996, 82954, 86800, 102050, 97734, 124271, 129404, 149941
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
This sequence and A006533 are two equivalent ways of presenting the same sequence.
Also the circuit rank of the n-polygon diagonal intersection graph. - Eric W. Weisstein, Mar 08 2018
This sequence only counts polygons, in contrast to A006533, which also counts the n segments of the circumscribed circle delimited by the edges of the regular n-gon. Therefore, a(n) = A006533(n) - n. See also A006561 which counts the number of intersection points, and A350000 which considers iterated "cutting along diagonals". - M. F. Hasler, Dec 13 2021
The Petrie polygon orthographic projection of a regular n-simplex is a regular (n+1)-gon with all diagonals drawn. Hence a(n+1) is the number of regions in the Petrie polygon of a regular n-simplex. - Mohammed Yaseen, Nov 05 2022
|
|
REFERENCES
|
Jean Meeus, Wiskunde Post (Belgium), Vol. 10, 1972, pp. 62-63.
C. A. Pickover, The Mathematics of Oz, Problem 58 "The Beauty of Polygon Slicing", Cambridge University Press, 2002.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
|
|
FORMULA
|
For odd n > 3, a(n) = sumstep {i=5, n, 2, (i-2)*floor(n/2)+(i-4)*ceiling(n/2)+1} + x*(x+1)*(2*x+1)/6*n), where x = (n-5)/2. Simplifying the floor/ceiling components gives the PARI code below. - Jon Perry, Jul 08 2003
For odd n, a(n) = (24 - 42*n + 23*n^2 - 6*n^3 + n^4)/24. - Graeme McRae, Dec 24 2004
For odd n, binomial transform of [1, 10, 29, 36, 16, 0, 0, 0, ...] = [1, 11, 50, 154, ...]. - Gary W. Adamson, Aug 02 2011
See the Mma code in A006533 for the explicit Poonen-Rubenstein formula that holds for all n. - N. J. A. Sloane, Jan 23 2020
|
|
MATHEMATICA
|
del[m_, n_]:=If[Mod[n, m]==0, 1, 0]; R[n_]:=If[n<3, 0, (n^4-6n^3+23n^2-42n+24)/24 + del[2, n](-5n^3+42n^2-40n-48)/48 - del[4, n](3n/4) + del[6, n](-53n^2+310n)/12 + del[12, n](49n/2) + del[18, n]*32n + del[24, n]*19n - del[30, n]*36n - del[42, n]*50n - del[60, n]*190n - del[84, n]*78n - del[90, n]*48n - del[120, n]*78n - del[210, n]*48n]; Table[R[n], {n, 1, 1000}] (* T. D. Noe, Dec 21 2006 *)
|
|
PROG
|
(PARI) /* Only for odd n > 3, not suitable for other values of n! */ { a(n)=local(nr, x, fn, cn, fn2); nr=0; fn=floor(n/2); cn=ceil(n/2); fn2=(fn-1)^2-1; nr=fn2*n+fn+(n-2)*fn+cn; x=(n-5)/2; if (x>0, nr+=x*(x+1)*(2*x+1)/6*n); nr; } \\ Jon Perry, Jul 08 2003
(PARI) apply( {A007678(n)=if(n%2, (((n-6)*n+23)*n-42)*n/24+1, ((n^3/2 -17*n^2/4 +22*n -if(n%4, 31, 40) +!(n%6)*(310 -53*n))/12 +!(n%12)*49/2 +!(n%18)*32 +!(n%24)*19 -!(n%30)*36 -!(n%42)*50 -!(n%60)*190 -!(n%84)*78 -!(n%90)*48 -!(n%120)*78 -!(n%210)*48)*n)}, [1..44]) \\ M. F. Hasler, Aug 06 2021
(Python)
def d(n, m): return not n % m
def A007678(n): return (1176*d(n, 12)*n - 3744*d(n, 120)*n + 1536*d(n, 18)*n - d(n, 2)*(5*n**3 - 42*n**2 + 40*n + 48) - 2304*d(n, 210)*n + 912*d(n, 24)*n - 1728*d(n, 30)*n - 36*d(n, 4)*n - 2400*d(n, 42)*n - 4*d(n, 6)*n*(53*n - 310) - 9120*d(n, 60)*n - 3744*d(n, 84)*n - 2304*d(n, 90)*n + 2*n**4 - 12*n**3 + 46*n**2 - 84*n)//48 + 1 # Chai Wah Wu, Mar 08 2021
|
|
CROSSREFS
|
A187781 gives number of distinct regions.
|
|
KEYWORD
|
nonn,nice
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|