login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007680
a(n) = (2n+1)*n!.
(Formerly M2861)
36
1, 3, 10, 42, 216, 1320, 9360, 75600, 685440, 6894720, 76204800, 918086400, 11975040000, 168129561600, 2528170444800, 40537905408000, 690452066304000, 12449059983360000, 236887827111936000, 4744158915944448000, 99748982335242240000
OFFSET
0,2
COMMENTS
Denominators in series for sqrt(Pi/4)*erf(x): sqrt(Pi/4)*erf(x)= x/1 - x^3/3 + x^5/10 - x^7/42 + x^9/216 -+ ...
Appears to be the BinomialMean transform of A000354 (after truncating the first term of A000354). (See A075271 for the definition of BinomialMean.) - John W. Layman, Apr 16 2003
Number of permutations p of {1,2,...,n+2} such that max|p(i)-i|=n+1. Example: a(1)=3 since only the permutations 312,231 and 321 of {1,2,3} satisfy the given condition. - Emeric Deutsch, Jun 04 2003
Stirling transform of A000670(n+1) = [3, 13, 75, 541, ...] is a(n) = [3, 10, 42, 216, ...]. - Michael Somos, Mar 04 2004
Stirling transform of a(n) = [2, 10, 42, 216, ...] is A052875(n+1) = [2, 12, 74, ...]. - Michael Somos, Mar 04 2004
A related sequence also arises in evaluating indefinite integrals of sec(x)^(2k+1), k=0, 1, 2, ... Letting u = sec(x) and d = sqrt(u^2-1), one obtains a(0) = log(u+d) 2*k*a(k) = (2*k-1)*u^(2*k-1)*d + a(k-1). Viewing these as polynomials in u gives 2^k*k!*a(k) = a(0) + d*Sum(i=0..k-1){ (2*i+1)*i!*2^i*u^(2*i+1) }, which is easily proved by induction. Apart from the power of 2, which could be incorporated into the definition of u (or by looking at erf(ix/2)/ i (i=sqrt(-1)), the sum's coefficients form our series and are the reciprocals of the power series terms for -sqrt(-Pi/4)*erf(ix/2)). This yields a direct but somewhat mysterious relationship between the power series of erf(x) and integrals involving sec(x). - William A. Huber (whuber(AT)quantdec.com), Mar 14 2002
When written in factoradic ("factorial base"), this sequence from a(1) onwards gives the smallest number containing two adjacent digits, increasing when read from left to right, whose difference is n-1. - Christian Perfect, May 03 2016
a(n-1)^2 is the number of permutations p of [1..2n] such that Sum_{i=1..2n} abs(p(i)-i) = 2n^2-2. - Fang Lixing, Dec 07 2018
A standard series for the calculation of coordinates on a clothoid (also called cornuspiral):
x = s*(a(0) - (tau^2/a(2)) + (tau^4/a(4) - (tau^6/a(6)) + …)
y = s*((tau/a(1)) + (tau^3/a(3)) - (tau^5/a(5)) + …).
s is the arclength from the clothoids origin to the desired point p(x,y). The tangent at the clothoids origin intersects with the tangent at the point p(x,y) with an angle of tau. - Thomas Scheuerle, Oct 13 2021
a(n) = P_n(1) where P_n(x) is the Pidduck polynomials. - Michael Somos, May 27 2023
REFERENCES
H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
N. Wirth, Systematisches Programmieren, 1975, exercise 9.3
LINKS
Emeric Deutsch, Problem Q915, Math. Magazine, vol. 74, No. 5, 2001, p. 404.
H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83. (Annotated scanned copy)
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
Eric Weisstein's World of Mathematics, Erf
Wikipedia, Factorial base
Jun Yan, Results on pattern avoidance in parking functions, arXiv:2404.07958 [math.CO], 2024. See p. 5.
FORMULA
E.g.f.: (1+x)/(1-x)^2.
This is the binomial mean transform of A000354 (after truncating the first term). See Spivey and Steil (2006). - Michael Z. Spivey (mspivey(AT)ups.edu), Feb 26 2006
E.g.f.: (of aerated sequence) 1+x^2/2+sqrt(pi)*(x+x^3/4)*exp(x^2/4)*ERF(x/2). - Paul Barry, Apr 11 2010
G.f.: 1 + x*G(0), where G(k)= 1 + x*(k+1)/(1 - (k+2)/(k+2 + (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 08 2013
a(n-2) = (A208528(n)+A208529(n))/2, for n>=2. - Luis Manuel Rivera Martínez, Mar 05 2014
D-finite with recurrence: (-2*n+1)*a(n) +n*(2*n+1)*a(n-1)=0. - R. J. Mathar, Jan 27 2020
Sum_{n>=0} 1/a(n) = sqrt(Pi)*erfi(1)/2 = A019704 * A099288 = A347910. - Amiram Eldar, Oct 07 2020
Sum_{n>=0} (-1)^n/a(n) = A347909 . - R. J. Mathar, Sep 30 2021
EXAMPLE
G.f. = 1 + 3*x + 10*x^2 + 42*x^3 + 216*x^4 + 1320*x^5 + 9360*x^6 + ... - Michael Somos, Jan 01 2019
MAPLE
[(2*n+1)*factorial(n)$n=0..20]; # Muniru A Asiru, Jan 01 2019
MATHEMATICA
Table[(2n + 1)*n!, {n, 0, 20}] (* Stefan Steinerberger, Apr 08 2006 *)
PROG
(PARI) {a(n) = if( n<0, 0, (2*n+1) * n!)}; /* Michael Somos, Mar 04 2004 */
(Magma)[(2*n+1)*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Aug 20 2011
(GAP) a:=List([0..20], n->(2*n+1)*Factorial(n));; Print(a); # Muniru A Asiru, Jan 01 2019
CROSSREFS
From Johannes W. Meijer, Nov 12 2009: (Start)
Appears in A167546.
Equals the rows sums of A167556.
(End)
Sequence in context: A030867 A186360 A352856 * A232606 A334270 A185621
KEYWORD
nonn,easy
STATUS
approved