login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A186360 Number of up-down cycles in all permutations of {1,2,...,n}. A cycle (b(1), b(2), ...) is said to be up-down if, when written with its smallest element in the first position, it satisfies b(1)<b(2)>b(3)<... . 3
0, 1, 3, 10, 42, 215, 1306, 9203, 73896, 666449, 6672426, 73447207, 881720276, 11465066353, 160533297198, 2408198818951, 38533084860528, 655081834141121, 11791682879883154, 224044379597455367, 4480916680834220172, 94099620668706861137, 2070196606209604069110 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) = Sum(k*A186358(n,k), k=0..n).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..300

E. Deutsch and S. Elizalde, Cycle up-down permutations, arXiv:0909.5199v1 [math.CO].

FORMULA

a(n) = n!*Sum(E(j-1)/j!, j=1..n), where E(i) = A000111(i) are the Euler (or up-down) numbers.

E.g.f.: -log(1-sin z)/(1-z).

a(n) ~ n! * (-log(1-sin(1))). - Vaclav Kotesovec, Oct 08 2013

EXAMPLE

a(3) = 10 because the permutations (1)(2)(3), (12)(3), (13)(2), (1)(23), (123), and (132) have a total of 3 + 2 + 2 + 2 + 0 + 1 = 10 up-down cycles.

MAPLE

g := -ln(1-sin(z))/(1-z): gser := series(g, z = 0, 25): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 22);

MATHEMATICA

CoefficientList[Series[-Log[1-Sin[x]]/(1-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 08 2013 *)

CROSSREFS

Cf. A000111, A186358.

Sequence in context: A030964 A263823 A030867 * A007680 A232606 A185621

Adjacent sequences:  A186357 A186358 A186359 * A186361 A186362 A186363

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Feb 28 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 22 12:23 EDT 2019. Contains 321421 sequences. (Running on oeis4.)