login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186360
Number of up-down cycles in all permutations of {1,2,...,n}. A cycle (b(1), b(2), ...) is said to be up-down if, when written with its smallest element in the first position, it satisfies b(1)<b(2)>b(3)<... .
3
0, 1, 3, 10, 42, 215, 1306, 9203, 73896, 666449, 6672426, 73447207, 881720276, 11465066353, 160533297198, 2408198818951, 38533084860528, 655081834141121, 11791682879883154, 224044379597455367, 4480916680834220172, 94099620668706861137, 2070196606209604069110
OFFSET
0,3
COMMENTS
a(n) = Sum(k*A186358(n,k), k=0..n).
LINKS
Emeric Deutsch and Sergi Elizalde, Cycle up-down permutations, arXiv:0909.5199 [math.CO], 2009; and also, Australas. J. Combin. 50 (2011), 187-199.
FORMULA
a(n) = n!*Sum(E(j-1)/j!, j=1..n), where E(i) = A000111(i) are the Euler (or up-down) numbers.
E.g.f.: -log(1-sin z)/(1-z).
a(n) ~ n! * (-log(1-sin(1))). - Vaclav Kotesovec, Oct 08 2013
EXAMPLE
a(3) = 10 because the permutations (1)(2)(3), (12)(3), (13)(2), (1)(23), (123), and (132) have a total of 3 + 2 + 2 + 2 + 0 + 1 = 10 up-down cycles.
MAPLE
g := -ln(1-sin(z))/(1-z): gser := series(g, z = 0, 25): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 22);
MATHEMATICA
CoefficientList[Series[-Log[1-Sin[x]]/(1-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 08 2013 *)
CROSSREFS
Sequence in context: A030964 A263823 A030867 * A352856 A007680 A232606
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 28 2011
STATUS
approved