The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A186360 Number of up-down cycles in all permutations of {1,2,...,n}. A cycle (b(1), b(2), ...) is said to be up-down if, when written with its smallest element in the first position, it satisfies b(1)b(3)<... . 3
 0, 1, 3, 10, 42, 215, 1306, 9203, 73896, 666449, 6672426, 73447207, 881720276, 11465066353, 160533297198, 2408198818951, 38533084860528, 655081834141121, 11791682879883154, 224044379597455367, 4480916680834220172, 94099620668706861137, 2070196606209604069110 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) = Sum(k*A186358(n,k), k=0..n). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..300 Emeric Deutsch and Sergi Elizalde, Cycle up-down permutations, arXiv:0909.5199 [math.CO], 2009; and also, Australas. J. Combin. 50 (2011), 187-199. FORMULA a(n) = n!*Sum(E(j-1)/j!, j=1..n), where E(i) = A000111(i) are the Euler (or up-down) numbers. E.g.f.: -log(1-sin z)/(1-z). a(n) ~ n! * (-log(1-sin(1))). - Vaclav Kotesovec, Oct 08 2013 EXAMPLE a(3) = 10 because the permutations (1)(2)(3), (12)(3), (13)(2), (1)(23), (123), and (132) have a total of 3 + 2 + 2 + 2 + 0 + 1 = 10 up-down cycles. MAPLE g := -ln(1-sin(z))/(1-z): gser := series(g, z = 0, 25): seq(factorial(n)*coeff(gser, z, n), n = 0 .. 22); MATHEMATICA CoefficientList[Series[-Log[1-Sin[x]]/(1-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 08 2013 *) CROSSREFS Cf. A000111, A186358. Sequence in context: A030964 A263823 A030867 * A007680 A232606 A334270 Adjacent sequences:  A186357 A186358 A186359 * A186361 A186362 A186363 KEYWORD nonn AUTHOR Emeric Deutsch, Feb 28 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 19:57 EDT 2021. Contains 347672 sequences. (Running on oeis4.)