OFFSET
0,8
COMMENTS
LINKS
E. Deutsch and S. Elizalde, Cycle up-down permutations, arXiv:0909.5199v1 [math.CO].
FORMULA
E.g.f. = exp((x-1)z)/(1-sin z).
The trivariate e.g.f. H(t,s,z) of the cycle-up-down permutations of {1,2,...,n} with respect to size (marked by z), number of cycles (marked by t), and number of fixed points (marked by x) is given by H(t,x,z) = exp((x-1)*t*z)/(1-sin(z))^t.
EXAMPLE
T(3,1)=3 because we have (1)(23), (12)(3), and (13)(2).
T(4,2)=6 because we have (1)(2)(34), (1)(23)(4), (1)(24)(3), (12)(3)(4), (13)(2)(4), and (14)(2)(3).
Triangle starts:
1;
0, 1;
1, 0, 1;
1, 3, 0, 1;
5, 4, 6, 0, 1;
15, 25, 10, 10, 0, 1;
MAPLE
G := exp((x-1)*z)/(1-sin(z)): Gser := simplify(series(G, z = 0, 16)): for n from 0 to 10 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: for n from 0 to 10 do seq(coeff(P[n], x, j), j = 0 .. n) end do; # yields sequence in triangular form
MATHEMATICA
T[n_, k_] := T[n, k] = If[k == 0, SeriesCoefficient[Exp[-x]/(1 - Sin[x]), {x, 0, n}] n!, T[n - k, 0] Binomial[n, k]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 24 2018 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Feb 28 2011
STATUS
approved