login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186365
Number of fixed points in all cycle-up-down permutations of {1,2,...,n}.
4
0, 1, 2, 6, 20, 80, 366, 1904, 11080, 71424, 505210, 3891712, 32433180, 290787328, 2791053734, 28556359680, 310264194320, 3567710830592, 43287834157938, 552688817143808, 7407423764750500, 103981459115606016, 1525675236649033822, 23354749389657604096
OFFSET
0,3
COMMENTS
A permutation is said to be cycle-up-down if it is a product of up-down cycles. A cycle (b(1), b(2), ...) is said to be up-down if, when written with its smallest element in the first position, it satisfies b(1) < b(2) > b(3) < ..., see example.
LINKS
Emeric Deutsch and Sergi Elizalde, Cycle up-down permutations, arXiv:0909.5199 [math.CO], 2009; and also, Australas. J. Combin. 50 (2011), 187-199.
FORMULA
E.g.f.: z/(1-sin(z)).
a(n) = Sum_{k=0..n} k*A186363(n,k).
a(n) = n*sum(j=0..(n-2)/2, (sum(i=0..(n-2*j-1)/2, (2*i+2*j-n+1)^(n-1)*C(n-2*j-1,i)*(-1)^((n+n-2*j-2)/2-i)))/2^(n-2*j-2)), n>1, a(1)=1, a(0)=0. - Vladimir Kruchinin, May 28 2011
E.g.f.: x/(1-sin(x)).
From Sergei N. Gladkovskii, May 30 2012: (Start)
Let E(x) be the e.g.f., then
E(x) = -1 + 1/(1-x)- x^4/((1-x)*((1-x)*G(0) + x^2)) where G(k)= (2*k+2)*(2*k+3)-x^2+(2*k+2)*(2*k+3)*x^2/G(k+1); (continued fraction, Euler's kind, 1-step).
E(x) = -1 + 1/(1-x)- x^4/((1-x)*((1-x)*G(0) + x^2)) where G(k)= 8*k+6-x^2/(1 + (2*k+2)*(2*k+3)/G(k+1)); (continued fraction, Euler's 2nd kind, 2-step).
E(x) = x/(1-x*G(0)) where G(k)= 1 - x^2/(2*(2*k+1)*(4*k+3) - 2*x^2*(2*k+1)*(4*k+3)/(x^2 - 4*(k+1)*(4*k+5)/G(k+1))); (continued fraction, 3rd kind, 3-step). (End)
E.g.f.: x/(1 - x*G(0)) where G(k)= 1 + x^2/( (2*k+1)*(2*k+3) - 2*k+1)*(2*k+3)^2/(2*k+3 - (2*k+2)/G(k+1))) ; (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Oct 01 2012
a(n) ~ n! * 2*n*(2/Pi)^(n+1). - Vaclav Kotesovec, Oct 08 2013
a(n) = n*A000111(n). - Peter Luschny, Oct 27 2017
Recurrence: a(0)=0,a(1)=1, for n > 1, a(n) = Sum_{k=0..floor((n-1)/2)}(-1)^k*binomial(n,2*k+1)*a(n-2*k-1). - Tani Akinari, Nov 01 2017
EXAMPLE
a(3) = 6 because the cycle-up-down permutations (1)(2)(3), (12)(3), (13)(2), (1)(23), and (132), have a total of 3 + 1 + 1 + 1 + 0 = 6 fixed points.
MAPLE
g := z/(1-sin(z)): gser := series(g, z = 0, 25):
seq(factorial(n)*coeff(gser, z, n), n = 0 .. 22);
# Alternatively (after Alois P. Heinz):
b := proc(u, o) option remember;
`if`(u + o = 0, 1, add(b(o - 1 + j, u - j), j = 1..u)) end:
a := n -> n*b(n, 0): seq(a(n), n = 0..23); # Peter Luschny, Oct 27 2017
MATHEMATICA
CoefficientList[Series[x/(1-Sin[x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 08 2013 *)
PROG
(Maxima)
a(n):=if n<2 then n else n*sum((sum((2*i+2*j-n+1)^(n-1)*binomial(n-2*j-1, i)*(-1)^((n+n-2*j-2)/2-i), i, 0, (n-2*j-1)/2))/2^(n-2*j-2), j, 0, (n-2)/2); (* Vladimir Kruchinin, May 28 2011 *)
(Maxima) a[n]:=if n<2 then n else sum((-1)^k*binomial(n, 2*k+1)*a[n-2*k-1], k, 0, floor((n-1)/2));
makelist(a[n], n, 0, 100); /* Tani Akinari, Nov 01 2017 */
(Sage)
f = x/(1-sin(x))
[factorial(n)*f.series(x, 25).coefficient(x, n) for n in (0..22)]
# Peter Luschny, Jun 26 2012
(Sage)
@CachedFunction
def c(n, k) :
if n==k: return 1
if k<1 or k>n: return 0
return ((n-k)//2+1)*c(n-1, k-1)+k*c(n-1, k+1)
def A186365(n): return n*add(c(n, k) for k in (0..n))
[A186365(n) for n in (0..23)] # Peter Luschny, Jun 10 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 28 2011
STATUS
approved