OFFSET
0,3
COMMENTS
Exponential transform of A000010.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..552
N. J. A. Sloane, Transforms
FORMULA
E.g.f.: exp(Sum_{k>=1} A000010(k)*x^k/k!).
a(0) = 1; a(n) = Sum_{k=1..n} phi(k) * binomial(n-1,k-1) * a(n-k). - Seiichi Manyama, Feb 27 2022
EXAMPLE
E.g.f.: A(x) = 1 + x/1! + 2*x^2/2! + 6*x^3/3! + 20*x^4/4! + 80*x^5/5! + 362*x^6/6! + 1820*x^7/7! + ...
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*
binomial(n-1, j-1)*numtheory[phi](j), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Mar 09 2018
MATHEMATICA
nmax = 24; CoefficientList[Series[Exp[Sum[EulerPhi[k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[EulerPhi[k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 24}]
PROG
(PARI) a(n) = if(n==0, 1, sum(k=1, n, eulerphi(k)*binomial(n-1, k-1)*a(n-k))); \\ Seiichi Manyama, Feb 27 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 09 2018
STATUS
approved