login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300009
Addition table for the 2 X 2 sandpile group: T(m,n) = A300006(m) (+) A300006(n), for 1 <= m <= n <= 192. (Upper right part of the symmetric matrix.)
4
330, 331, 332, 233, 1301, 1203, 1301, 1302, 1310, 1311, 1302, 1303, 1311, 1312, 1313, 1310, 1311, 1213, 1320, 1321, 1223, 1311, 1312, 1320, 1321, 1322, 1330, 1331, 1312, 1313, 1321, 1322, 1323, 1331, 1332, 1333, 323, 1031, 332, 333, 2002, 1303, 2011, 2012, 1023, 1031, 1032, 333, 2002, 2003, 2011, 2012, 2013, 1130
OFFSET
1,1
COMMENTS
The sandpile-addition of 2 X 2 matrices is the standard addition, followed by repeated "toppling" of matrix elements > 3, which are decreased by 4 and increase each of their von-Neumann neighbors. A300006 lists all 192 elements of the 2 X 2 sandpile group, the largest subset of the 2 X 2 matrices which forms a group under the sandpile addition, with neutral element e = [2,2;2,2] encoded as A300006(116) = 2222. The symbol (+) denotes sandpile addition indifferently for 2 X 2 matrices and for their decimal encoding.
This is the (addition) table of this group, which is abelian, so we list only 1 <= m <= n <= 192, where m, n are the indices of the elements of A300006.
LINKS
M. F. Hasler, Table of n, a(n) for n = 1..18528. (Complete sequence: row / column 1..192, flattened.)
EXAMPLE
T(1,1) = 0330 represents [0,1;1,2] (+) [0,1;1,2] = [0,3;3,0] (result after "toppling" the plain addition of the first element of A300006 to itself, 0112 + 0112 = 0224).
Given that the operation is abelian, the sequence lists only the upper-right (or equivalently, lower left) part of the table: (For reference we mark \abcd\ the diagonal element which is the last one listed of the respective row / column.)
A \ B: 0112 0113 0121 0122 0123 0131 0132 0133 0211 ...
0112 :\0330\ 0331 0233 1301 1302 1310 1311 1312 0323 ...
0113 : 0331 \0332\ 1301 1302 1310 1311 1312 1313 1031 ...
0121 : 0233 1301 \1203\ 1310 1311 1213 1320 1321 0332 ...
0122 : 1301 1302 1310 \1311\ 1312 1320 1321 1322 0333 ...
0123 : 1302 1303 1311 1312 \1313\ 1321 1322 1323 2002 ...
0131 : 1310 1311 1213 1320 1321 \1223\ 1330 1331 2011 ...
0132 : 1311 1312 1320 1321 1322 1330 \1331\ 1332 2012 ...
0133 : 1312 1313 1321 1322 1323 1331 1332 \1333\ 2012 ...
0211 : 0323 1031 0332 0333 2002 1303 2011 2012 \1023\ ...
...
PROG
(PARI) A300009(m, n)=m2d(spa(S2[m], S2[n])) \\ with m2d(), spa() and S2 defined in A300006.
CROSSREFS
For links, references etc. see the main entry A300006.
Sequence in context: A190920 A145274 A174848 * A244264 A117345 A237189
KEYWORD
nonn,fini,full,tabl
AUTHOR
M. F. Hasler, Mar 07 2018
STATUS
approved