login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of fixed points in all cycle-up-down permutations of {1,2,...,n}.
4

%I #59 Nov 07 2020 06:01:04

%S 0,1,2,6,20,80,366,1904,11080,71424,505210,3891712,32433180,290787328,

%T 2791053734,28556359680,310264194320,3567710830592,43287834157938,

%U 552688817143808,7407423764750500,103981459115606016,1525675236649033822,23354749389657604096

%N Number of fixed points in all cycle-up-down permutations of {1,2,...,n}.

%C A permutation is said to be cycle-up-down if it is a product of up-down cycles. A cycle (b(1), b(2), ...) is said to be up-down if, when written with its smallest element in the first position, it satisfies b(1) < b(2) > b(3) < ..., see example.

%H Alois P. Heinz, <a href="/A186365/b186365.txt">Table of n, a(n) for n = 0..300</a>

%H Emeric Deutsch and Sergi Elizalde, <a href="http://arxiv.org/abs/0909.5199">Cycle up-down permutations</a>, arXiv:0909.5199 [math.CO], 2009; and <a href="https://ajc.maths.uq.edu.au/pdf/50/ajc_v50_p187.pdf">also</a>, Australas. J. Combin. 50 (2011), 187-199.

%F E.g.f.: z/(1-sin(z)).

%F a(n) = Sum_{k=0..n} k*A186363(n,k).

%F a(n) = n*sum(j=0..(n-2)/2, (sum(i=0..(n-2*j-1)/2, (2*i+2*j-n+1)^(n-1)*C(n-2*j-1,i)*(-1)^((n+n-2*j-2)/2-i)))/2^(n-2*j-2)), n>1, a(1)=1, a(0)=0. - _Vladimir Kruchinin_, May 28 2011

%F E.g.f.: x/(1-sin(x)).

%F From _Sergei N. Gladkovskii_, May 30 2012: (Start)

%F Let E(x) be the e.g.f., then

%F E(x) = -1 + 1/(1-x)- x^4/((1-x)*((1-x)*G(0) + x^2)) where G(k)= (2*k+2)*(2*k+3)-x^2+(2*k+2)*(2*k+3)*x^2/G(k+1); (continued fraction, Euler's kind, 1-step).

%F E(x) = -1 + 1/(1-x)- x^4/((1-x)*((1-x)*G(0) + x^2)) where G(k)= 8*k+6-x^2/(1 + (2*k+2)*(2*k+3)/G(k+1)); (continued fraction, Euler's 2nd kind, 2-step).

%F E(x) = x/(1-x*G(0)) where G(k)= 1 - x^2/(2*(2*k+1)*(4*k+3) - 2*x^2*(2*k+1)*(4*k+3)/(x^2 - 4*(k+1)*(4*k+5)/G(k+1))); (continued fraction, 3rd kind, 3-step). (End)

%F E.g.f.: x/(1 - x*G(0)) where G(k)= 1 + x^2/( (2*k+1)*(2*k+3) - 2*k+1)*(2*k+3)^2/(2*k+3 - (2*k+2)/G(k+1))) ; (continued fraction, 3rd kind, 3-step). - _Sergei N. Gladkovskii_, Oct 01 2012

%F a(n) ~ n! * 2*n*(2/Pi)^(n+1). - _Vaclav Kotesovec_, Oct 08 2013

%F a(n) = n*A000111(n). - _Peter Luschny_, Oct 27 2017

%F Recurrence: a(0)=0,a(1)=1, for n > 1, a(n) = Sum_{k=0..floor((n-1)/2)}(-1)^k*binomial(n,2*k+1)*a(n-2*k-1). - _Tani Akinari_, Nov 01 2017

%e a(3) = 6 because the cycle-up-down permutations (1)(2)(3), (12)(3), (13)(2), (1)(23), and (132), have a total of 3 + 1 + 1 + 1 + 0 = 6 fixed points.

%p g := z/(1-sin(z)): gser := series(g, z = 0, 25):

%p seq(factorial(n)*coeff(gser, z, n), n = 0 .. 22);

%p # Alternatively (after _Alois P. Heinz_):

%p b := proc(u, o) option remember;

%p `if`(u + o = 0, 1, add(b(o - 1 + j, u - j), j = 1..u)) end:

%p a := n -> n*b(n, 0): seq(a(n), n = 0..23); # _Peter Luschny_, Oct 27 2017

%t CoefficientList[Series[x/(1-Sin[x]), {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Oct 08 2013 *)

%o (Maxima)

%o a(n):=if n<2 then n else n*sum((sum((2*i+2*j-n+1)^(n-1)*binomial(n-2*j-1,i)*(-1)^((n+n-2*j-2)/2-i),i,0,(n-2*j-1)/2))/2^(n-2*j-2),j,0,(n-2)/2); (* _Vladimir Kruchinin_, May 28 2011 *)

%o (Maxima) a[n]:=if n<2 then n else sum((-1)^k*binomial(n,2*k+1)*a[n-2*k-1],k,0,floor((n-1)/2));

%o makelist(a[n],n,0,100); /* _Tani Akinari_, Nov 01 2017 */

%o (Sage)

%o f = x/(1-sin(x))

%o [factorial(n)*f.series(x,25).coefficient(x,n) for n in (0..22)]

%o # _Peter Luschny_, Jun 26 2012

%o (Sage)

%o @CachedFunction

%o def c(n,k) :

%o if n==k: return 1

%o if k<1 or k>n: return 0

%o return ((n-k)//2+1)*c(n-1,k-1)+k*c(n-1,k+1)

%o def A186365(n): return n*add(c(n,k) for k in (0..n))

%o [A186365(n) for n in (0..23)] # _Peter Luschny_, Jun 10 2014

%Y Cf. A000111, A186363, A108124.

%K nonn

%O 0,3

%A _Emeric Deutsch_, Feb 28 2011