login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186368
Triangle read by rows: T(n,k) is the number of cycle-up-down permutations of {1,2,...,n} having k excedances (0<=k<=floor(n/2)).
1
1, 1, 1, 1, 1, 4, 1, 10, 5, 1, 20, 40, 1, 35, 175, 61, 1, 56, 560, 768, 1, 84, 1470, 4996, 1385, 1, 120, 3360, 22720, 24320, 1, 165, 6930, 81730, 214445, 50521, 1, 220, 13200, 248512, 1288320, 1152512, 1, 286, 23595, 665236, 5986695, 12989678, 2702765, 1, 364, 40040, 1610752, 23063040, 98169344, 76477440
OFFSET
0,6
COMMENTS
A permutation is said to be cycle-up-down if it is a product of up-down cycles. A cycle (b(1), b(2), ...) is said to be up-down if, when written with its smallest element in the first position, it satisfies b(1) < b(2) > b(3) < ... .
Row n has 1+floor(n/2) entries.
Sum of entries in row n is A000111(n+1) (the Euler or up-down numbers).
LINKS
E. Deutsch and S. Elizalde, Cycle up-down permutations, arXiv:0909.5199 [math.CO], 2009.
FORMULA
T(n,1) = (1/6)n(n-1)(n+1) = A000292(n-1).
T(2n,n) = A000111(2n) (the Euler numbers).
Sum(k*T(n,k),k>=0) = A186369(n).
E.g.f.: G(t,z)=[sec(z*sqrt(t)) + tan(z*sqrt(t))]^{1/sqrt(t)}/cos(z*sqrt(t)).
EXAMPLE
T(n,0)=1, the identity permutation.
T(4,2)=5 because we have (12)(34), (13)(24), (1324), (1423), and (14)(23).
Triangle starts:
1;
1;
1,1;
1,4;
1,10,5;
1,20,40;
1,35,175,61;
MAPLE
G := (sec(z*sqrt(t))+tan(z*sqrt(t)))^(1/sqrt(t))/cos(z*sqrt(t)): Gser := simplify(series(G, z = 0, 16)): for n from 0 to 13 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: for n from 0 to 13 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
MATHEMATICA
T[n_, k_] := n! SeriesCoefficient[(Sec[z*Sqrt[t]] + Tan[z*Sqrt[t]])^(1/ Sqrt[t])/Cos[z*Sqrt[t]], {z, 0, n}, {t, 0, k}]; Table[T[n, k], {n, 0, 13}, {k, 0, n/2}] // Flatten (* Jean-François Alcover, Oct 30 2017 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Feb 28 2011
STATUS
approved