login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356777
G.f.: Sum_{n=-oo..+oo} x^(n^2) * C(x)^(2*n-1), where C(x) = 1 + x*C(x)^2 is a g.f. of the Catalan numbers (A000108).
3
1, 1, -3, 0, 1, -5, 5, 0, 0, 1, -7, 14, -7, 0, 0, 0, 1, -9, 27, -30, 9, 0, 0, 0, 0, 1, -11, 44, -77, 55, -11, 0, 0, 0, 0, 0, 1, -13, 65, -156, 182, -91, 13, 0, 0, 0, 0, 0, 0, 1, -15, 90, -275, 450, -378, 140, -15, 0, 0, 0, 0, 0, 0, 0, 1, -17, 119, -442, 935, -1122, 714, -204, 17, 0, 0, 0, 0, 0, 0, 0, 0, 1, -19, 152, -665, 1729, -2717, 2508, -1254, 285, -19
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n may be obtained from the following expressions; here, C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
(1) A(x) = Sum_{n=-oo..+oo} x^(n^2) * C(x)^(2*n-1).
(2) A(x) = 1/C(x) * Product_{n>=1} (1 + x^(2*n-1)*C(x)^2) * (1 + x^(2*n-1)/C(x)^2) * (1 - x^(2*n)), by the Jacobi triple product identity.
(3) A(x) = 1/C(x) + Sum_{n>=1} x^(n^2) * (C(x)^(2*n-1) + 1/C(x)^(2*n+1)).
(4) A(x) = Sum_{n>=0} Sum_{k=0..n} (-1)^k * binomial(2*n-k, k) * (2*n+1)/(2*n-2*k+1) * x^(n^2 + k).
EXAMPLE
G.f.: A(x) = 1 + x - 3*x^2 + x^4 - 5*x^5 + 5*x^6 + x^9 - 7*x^10 + 14*x^11 - 7*x^12 + x^16 - 9*x^17 + 27*x^18 - 30*x^19 + 9*x^20 + x^25 - 11*x^26 + 44*x^27 - 77*x^28 + 55*x^29 - 11*x^30 + x^36 - 13*x^37 + 65*x^38 - 156*x^39 + 182*x^40 - 91*x^41 + 13*x^42 + x^49 - 15*x^50 + 90*x^51 - 275*x^52 + 450*x^53 - 378*x^54 + 140*x^55 - 15*x^56 + ...
such that
A(x) = ... + x^16/C(x)^9 + x^9/C(x)^7 + x^4/C(x)^5 + x/C(x)^3 + 1/C(x) + x*C(x) + x^4*C(x)^3 + x^9*C(x)^5 + x^16*C(x)^7 + x^25*C(x)^9 + ... + x^(n^2)*C^(2*n-1) + ...
where the Catalan function C(x) = (1 - sqrt(1-4*x))/(2*x) begins
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + 4862*x^9 + ... + A000108(n)*x^n + ...
RELATED TABLE.
This sequence may be written in the form of an irregular triangle:
1,
1, -3, 0,
1, -5, 5, 0, 0,
1, -7, 14, -7, 0, 0, 0,
1, -9, 27, -30, 9, 0, 0, 0, 0,
1, -11, 44, -77, 55, -11, 0, 0, 0, 0, 0,
1, -13, 65, -156, 182, -91, 13, 0, 0, 0, 0, 0, 0,
1, -15, 90, -275, 450, -378, 140, -15, 0, 0, 0, 0, 0, 0, 0,
1, -17, 119, -442, 935, -1122, 714, -204, 17, 0, 0, 0, 0, 0, 0, 0, 0,
1, -19, 152, -665, 1729, -2717, 2508, -1254, 285, -19, 0, 0, 0, 0, 0, 0, 0, 0, 0,
...
Compare the above construction to triangle A082985.
PROG
(PARI) /* By Definition: */
{a(n) = my(A, C = 1/x*serreverse(x-x^2 +O(x^(n+2))), M=ceil(sqrt(n+1)));
A = sum(m=-M, M, x^(m^2) * C^(2*m-1) ); polcoeff(A, n)}
for(n=0, 90, print1(a(n), ", "))
(PARI) /* Without Using Catalan Series */
{a(n) = my(A, M=ceil(sqrt(n+1)));
A = sum(m=0, M, sum(k=0, 2*m, (-1)^k*binomial(2*m-k, k)*(2*m+1)/(2*m-2*k+1) * x^(m^2 + k) ) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 90, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Sep 08 2022
STATUS
approved