login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356780
Coefficients in the odd function A(x) such that: A(x) = A( x^2 + 2*x^2*A(x)^2 )^(1/2), with A(0)=0, A'(0)=1.
0
1, 1, 2, 6, 21, 78, 303, 1223, 5085, 21623, 93585, 410894, 1825682, 8193544, 37087449, 169114547, 776110247, 3581944258, 16614576945, 77410877233, 362126147797, 1700179143293, 8008689767674, 37838553977426, 179268540549758, 851478474635404, 4053760582437106
OFFSET
1,3
COMMENTS
Compare the g.f. to the following identities:
(1) C(x) = C( x^2 + 2*x*C(x)^2 )^(1/2),
(2) C(x) = C( x^3 + 3*x*C(x)^3 )^(1/3),
where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
FORMULA
G.f. A(x) = Sum_{n>=1} a(n) * x^(2*n-1) satisfies:
(1) A(x) = sqrt( A( x^2 + 2*x^2*A(x)^2 ) ).
(2) G(x) = sqrt( G(x^2) / (1 + 2*x^2) ), where A(G(x)) = x.
EXAMPLE
G.f. A(x) = x + x^3 + 2*x^5 + 6*x^7 + 21*x^9 + 78*x^11 + 303*x^13 + 1223*x^15 + 5085*x^17 + 21623*x^19 + 93585*x^21 + ...
where A(x)^2 = A( x^2 + 2*x^2*A(x)^2 ).
RELATED SERIES.
A(x)^2 = x^2 + 2*x^4 + 5*x^6 + 16*x^8 + 58*x^10 + 222*x^12 + 882*x^14 + 3616*x^16 + 15205*x^18 + 65220*x^20 + ...
x^2 + 2*x^2*A(x)^2 = x^2 + 2*x^4 + 4*x^6 + 10*x^8 + 32*x^10 + 116*x^12 + 444*x^14 + 1764*x^16 + 7232*x^18 + 30410*x^20 + ...
Let G(x) = Series_Reversion( A(x) ) then
G(x) = x - x^3 + x^5 - 2*x^7 + 4*x^9 - 7*x^11 + 12*x^13 - 23*x^15 + 45*x^17 - 84*x^19 + 157*x^21 - 302*x^23 + 584*x^25 - 1121*x^27 + ...
where G(x)^2 = G(x^2)/(1 + 2*x^2) and G(A(x)) = x.
PROG
(PARI) {a(n) = my(A=x+x^3, X=x+x*O(x^(2*n))); for(i=1, 2*n, A = subst(A, x, x^2 + 2*X^2*A^2)^(1/2) ); polcoeff(A, 2*n-1)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 27 2022
STATUS
approved